forked from gdjmck/AttentionBasedEmbeddingForMetricLearning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom_sampler.py
45 lines (35 loc) · 1.24 KB
/
random_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from torch.utils.data.sampler import Sampler
import torch
# From
# https://discuss.pytorch.org/t/random-sampler-implementation/18934/7
class RandomSampler(Sampler):
r"""Samples elements randomly, without replacement.
Arguments:
data_source (Dataset): dataset to sample from
"""
def __init__(self, data_source, batch_size):
self.data_source = data_source
self.batch_size = batch_size
self.i = 0
self.idx = torch.randperm (len (self.data_source)).tolist ()
def __iter__(self):
self.i = 0
while (self.i+1)*self.batch_size < len(self.data_source):
yield self.idx[self.i*self.batch_size: (self.i+1)*self.batch_size]
self.i+=1
def __len__(self):
return len(self.data_source)
class BatchSampler(Sampler):
def __init__(self, sampler, batch_size, drop_last):
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last
def __iter__(self):
batch = []
for _, idx in enumerate(iter(self.sampler)):
batch = idx
yield batch
if len(batch) > 0 and not self.drop_last:
yield batch
def __len__(self):
return len(self.sampler) // self.batch_size