-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.r
170 lines (156 loc) · 6.2 KB
/
utils.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
library(pdist)
# source: http://r-sig-geo.2731867.n2.nabble.com/alpha-hull-ahull-to-polygon-shapefile-td7342734.html
ah2sp <- function(x, increment=360, rnd=10, proj4string=CRS(as.character(NA))){
require(alphahull)
require(maptools)
if (class(x) != "ahull"){
stop("x needs to be an ahull class object")
}
# Extract the edges from the ahull object as a dataframe
xdf <- as.data.frame(x$arcs)
# Remove all cases where the coordinates are all the same
xdf <- subset(xdf,xdf$r > 0)
res <- NULL
if (nrow(xdf) > 0){
# Convert each arc to a line segment
linesj <- list()
prevx<-NULL
prevy<-NULL
j<-1
for(i in 1:nrow(xdf)){
rowi <- xdf[i,]
v <- c(rowi$v.x, rowi$v.y)
theta <- rowi$theta
r <- rowi$r
cc <- c(rowi$c1, rowi$c2)
# Arcs need to be redefined as strings of points. Work out the number of points to allocate in this arc segment.
ipoints <- 2 + round(increment * (rowi$theta / 2),0)
# Calculate coordinates from arc() description for ipoints along the arc.
angles <- anglesArc(v, theta)
seqang <- seq(angles[1], angles[2], length = ipoints)
x <- round(cc[1] + r * cos(seqang),rnd)
y <- round(cc[2] + r * sin(seqang),rnd)
# Check for line segments that should be joined up and combine their coordinates
if (is.null(prevx)){
prevx<-x
prevy<-y
} else if (x[1] == round(prevx[length(prevx)],rnd) && y[1] == round(prevy[length(prevy)],rnd)){
if (i == nrow(xdf)){
#We have got to the end of the dataset
prevx<-append(prevx,x[2:ipoints])
prevy<-append(prevy,y[2:ipoints])
prevx[length(prevx)]<-prevx[1]
prevy[length(prevy)]<-prevy[1]
coordsj<-cbind(prevx,prevy)
colnames(coordsj)<-NULL
# Build as Line and then Lines class
linej <- Line(coordsj)
linesj[[j]] <- Lines(linej, ID = as.character(j))
} else {
prevx<-append(prevx,x[2:ipoints])
prevy<-append(prevy,y[2:ipoints])
}
} else {
# We have got to the end of a set of lines, and there are several such sets, so convert the whole of this one to a line segment and reset.
prevx[length(prevx)]<-prevx[1]
prevy[length(prevy)]<-prevy[1]
coordsj<-cbind(prevx,prevy)
colnames(coordsj)<-NULL
# Build as Line and then Lines class
linej <- Line(coordsj)
linesj[[j]] <- Lines(linej, ID = as.character(j))
j<-j+1
prevx<-NULL
prevy<-NULL
}
}
# Promote to SpatialLines
lspl <- SpatialLines(linesj)
# Convert lines to polygons
# Pull out Lines slot and check which lines have start and end points that are the same
lns <- slot(lspl, "lines")
polys <- sapply(lns, function(x) {
crds <- slot(slot(x, "Lines")[[1]], "coords")
identical(crds[1, ], crds[nrow(crds), ])
})
# Select those that do and convert to SpatialPolygons
polyssl <- lspl[polys]
list_of_Lines <- slot(polyssl, "lines")
sppolys <- SpatialPolygons(list(Polygons(lapply(list_of_Lines, function(x) { Polygon(slot(slot(x, "Lines")[[1]], "coords")) }), ID = "1")), proj4string=proj4string)
# Create a set of ids in a dataframe, then promote to SpatialPolygonsDataFrame
hid <- sapply(slot(sppolys, "polygons"), function(x) slot(x, "ID"))
areas <- sapply(slot(sppolys, "polygons"), function(x) slot(x, "area"))
df <- data.frame(hid,areas)
names(df) <- c("HID","Area")
rownames(df) <- df$HID
res <- SpatialPolygonsDataFrame(sppolys, data=df)
print(res@data$Area)
res <- res[which(res@data$Area > 0),]
}
return(res)
}
# source: https://stat.ethz.ch/pipermail/r-sig-geo/2009-May/005781.html
owin2Polygons <- function(x, id="1") {
stopifnot(is.owin(x))
x <- as.polygonal(x)
closering <- function(df) { df[c(seq(nrow(df)), 1), ] }
pieces <- lapply(x$bdry,
function(p) {
Polygon(coords=closering(cbind(p$x,p$y)),
hole=is.hole.xypolygon(p)) })
z <- Polygons(pieces, id)
return(z)
}
tess2SP <- function(x) {
stopifnot(is.tess(x))
y <- tiles(x)
nam <- names(y)
z <- list()
for(i in seq(y))
z[[i]] <- owin2Polygons(y[[i]], nam[i])
return(SpatialPolygons(z))
}
owin2SP <- function(x) {
stopifnot(is.owin(x))
y <- owin2Polygons(x)
z <- SpatialPolygons(list(y))
return(z)
}
# this is for Maryland
lat_long_to_xy = function(lat,long) {
library(rgdal)
library(sp)
data = data.frame(long=long, lat=lat)
coordinates(data) <- ~ long+lat
proj4string(data) <- CRS("+init=epsg:4326")
xy = data.frame(spTransform(data, CRS("+init=epsg:2804")))
setnames(xy,c("x","y"))
return(xy[,c("x","y")])
}
max_v = function(x,x0) vapply(x,function(a) max(a,x0), x0)
epanech = function(x, lengthscale) {
return(max_v((0.75 * (1 - (x/3.1415926/lengthscale)^2)/3.1415926)/lengthscale,0.0));
}
quartic = function(x,lengthscale) {
return(max_v((0.9375 * (1 - (x/lengthscale)^2)^2)/lengthscale,0.0))
}
epanech2 = function(x, lengthscale) {
return(max_v((0.75 * (1 - (x/lengthscale)^2))/lengthscale,0.0));
}
daniell = function(x, lengthscale) {
return(max_v(0.2387324*(1-abs(x)/3.1415926/lengthscale)/lengthscale,0.0));
}
gaussian2 = function(x, lengthscale) {
return(exp(-(x^2/lengthscale^2)/2)/sqrt(pi*2)/lengthscale)
}
gaussian = function(x, lengthscale) {
return(0.3989423*exp(-.5 * x^2/lengthscale^2)/lengthscale);
}
intensity.estimate.separable = function(xyt, lengthscale.s, lengthscale.t) {
return(apply(xyt, 1, function(x) sum(epanech2(pdist(x[1:2],xyt[,1:2])@dist, lengthscale.s)) *
sum(epanech2(pdist(matrix(x[3]),matrix(xyt[,3]))@dist, lengthscale.t))/nrow(xyt) ))
}
intensity.estimate = function(xyt, lengthscale.s, lengthscale.t, kernel=epanech2) {
return(apply(xyt, 1, function(x) sum(kernel(pdist(x[1:2],xyt[,1:2])@dist, lengthscale.s) *
(kernel(pdist(matrix(x[3]),matrix(xyt[,3]))@dist, lengthscale.t)))))
}