|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import diffnet as dn\n", |
| 12 | + "from cvxopt import matrix" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 2, |
| 18 | + "metadata": { |
| 19 | + "collapsed": true |
| 20 | + }, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "import numpy as np" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 3, |
| 29 | + "metadata": { |
| 30 | + "collapsed": true |
| 31 | + }, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "K = 5\n", |
| 35 | + "s = np.random.rand( K, K)\n", |
| 36 | + "s = 0.5*(s.T + s)\n", |
| 37 | + "# for i in range(K): s[i,i] = np.inf" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 4, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [ |
| 45 | + { |
| 46 | + "data": { |
| 47 | + "text/plain": [ |
| 48 | + "array([[0.31606839, 0.89819236, 0.89703422, 0.30095392, 0.54763611],\n", |
| 49 | + " [0.89819236, 0.70860277, 0.77928054, 0.47375313, 0.64210208],\n", |
| 50 | + " [0.89703422, 0.77928054, 0.8733601 , 0.08316998, 0.12200628],\n", |
| 51 | + " [0.30095392, 0.47375313, 0.08316998, 0.41130463, 0.29626953],\n", |
| 52 | + " [0.54763611, 0.64210208, 0.12200628, 0.29626953, 0.63852698]])" |
| 53 | + ] |
| 54 | + }, |
| 55 | + "execution_count": 4, |
| 56 | + "metadata": {}, |
| 57 | + "output_type": "execute_result" |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "s" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 5, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "name": "stdout", |
| 71 | + "output_type": "stream", |
| 72 | + "text": [ |
| 73 | + " pcost dcost gap pres dres k/t\n", |
| 74 | + " 0: 0.0000e+00 -0.0000e+00 1e+02 4e+00 7e+02 1e+00\n", |
| 75 | + " 1: 3.3375e+00 3.6649e+00 1e+01 6e-01 1e+02 5e-01\n", |
| 76 | + " 2: 3.4839e+00 3.7049e+00 8e+00 4e-01 6e+01 3e-01\n", |
| 77 | + " 3: 3.4750e+00 3.5654e+00 3e+00 1e-01 2e+01 1e-01\n", |
| 78 | + " 4: 3.3033e+00 3.3647e+00 2e+00 7e-02 1e+01 8e-02\n", |
| 79 | + " 5: 3.3956e+00 3.4196e+00 1e+00 4e-02 6e+00 3e-02\n", |
| 80 | + " 6: 3.2196e+00 3.2352e+00 8e-01 2e-02 3e+00 2e-02\n", |
| 81 | + " 7: 3.1761e+00 3.1793e+00 2e-01 3e-03 6e-01 4e-03\n", |
| 82 | + " 8: 3.1702e+00 3.1708e+00 3e-02 6e-04 1e-01 7e-04\n", |
| 83 | + " 9: 3.1686e+00 3.1686e+00 4e-03 8e-05 1e-02 1e-04\n", |
| 84 | + "10: 3.1683e+00 3.1683e+00 4e-04 7e-06 1e-03 8e-06\n", |
| 85 | + "11: 3.1683e+00 3.1683e+00 8e-06 2e-07 3e-05 2e-07\n", |
| 86 | + "12: 3.1683e+00 3.1683e+00 6e-07 1e-08 2e-06 1e-08\n", |
| 87 | + "13: 3.1683e+00 3.1683e+00 4e-08 8e-10 1e-07 1e-09\n", |
| 88 | + "Optimal solution found.\n" |
| 89 | + ] |
| 90 | + } |
| 91 | + ], |
| 92 | + "source": [ |
| 93 | + "n = dn.A_optimize( matrix(s))" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": 6, |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [ |
| 101 | + { |
| 102 | + "name": "stdout", |
| 103 | + "output_type": "stream", |
| 104 | + "text": [ |
| 105 | + "[ 1.41e-01 1.94e-10 -3.02e-11 8.84e-02 4.21e-10]\n", |
| 106 | + "[ 1.94e-10 1.05e-01 9.93e-11 2.05e-01 5.44e-10]\n", |
| 107 | + "[-3.02e-11 9.93e-11 3.05e-11 6.61e-02 6.85e-02]\n", |
| 108 | + "[ 8.84e-02 2.05e-01 6.61e-02 3.26e-01 7.75e-11]\n", |
| 109 | + "[ 4.21e-10 5.44e-10 6.85e-02 7.75e-11 8.75e-10]\n", |
| 110 | + "\n" |
| 111 | + ] |
| 112 | + } |
| 113 | + ], |
| 114 | + "source": [ |
| 115 | + "print(n)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 7, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [ |
| 123 | + { |
| 124 | + "data": { |
| 125 | + "text/plain": [ |
| 126 | + "3.168258731683343" |
| 127 | + ] |
| 128 | + }, |
| 129 | + "execution_count": 7, |
| 130 | + "metadata": {}, |
| 131 | + "output_type": "execute_result" |
| 132 | + } |
| 133 | + ], |
| 134 | + "source": [ |
| 135 | + "np.trace(dn.covariance( n/s**2))" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 8, |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [ |
| 143 | + { |
| 144 | + "data": { |
| 145 | + "text/plain": [ |
| 146 | + "array([[0.48064717, 0.12440851, 0.15276036, 0.15276036, 0.15276036],\n", |
| 147 | + " [0.12440851, 1.13881256, 0.30465855, 0.30465855, 0.30465855],\n", |
| 148 | + " [0.15276036, 0.30465855, 0.47877161, 0.37408816, 0.47877161],\n", |
| 149 | + " [0.15276036, 0.30465855, 0.37408816, 0.37408816, 0.37408816],\n", |
| 150 | + " [0.15276036, 0.30465855, 0.47877161, 0.37408816, 0.69593923]])" |
| 151 | + ] |
| 152 | + }, |
| 153 | + "execution_count": 8, |
| 154 | + "metadata": {}, |
| 155 | + "output_type": "execute_result" |
| 156 | + } |
| 157 | + ], |
| 158 | + "source": [ |
| 159 | + "dn.covariance( n/s**2)" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "markdown", |
| 164 | + "metadata": {}, |
| 165 | + "source": [ |
| 166 | + "Clearly, the diagonal elements are not the same." |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": 9, |
| 172 | + "metadata": { |
| 173 | + "collapsed": true |
| 174 | + }, |
| 175 | + "outputs": [], |
| 176 | + "source": [ |
| 177 | + "s = np.ones( (K, K)) + 0.1*(np.random.rand( K, K) - 0.5)\n", |
| 178 | + "s = 0.5*(s + s.T)" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": 10, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [ |
| 186 | + { |
| 187 | + "data": { |
| 188 | + "text/plain": [ |
| 189 | + "array([[0.97351052, 0.96050154, 1.01524271, 1.00311652, 1.00580902],\n", |
| 190 | + " [0.96050154, 0.95744738, 1.00080002, 1.03008442, 0.97986122],\n", |
| 191 | + " [1.01524271, 1.00080002, 1.01532568, 1.01995957, 1.00801957],\n", |
| 192 | + " [1.00311652, 1.03008442, 1.01995957, 1.02903125, 1.01919704],\n", |
| 193 | + " [1.00580902, 0.97986122, 1.00801957, 1.01919704, 0.99439068]])" |
| 194 | + ] |
| 195 | + }, |
| 196 | + "execution_count": 10, |
| 197 | + "metadata": {}, |
| 198 | + "output_type": "execute_result" |
| 199 | + } |
| 200 | + ], |
| 201 | + "source": [ |
| 202 | + "s" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": 11, |
| 208 | + "metadata": {}, |
| 209 | + "outputs": [ |
| 210 | + { |
| 211 | + "name": "stdout", |
| 212 | + "output_type": "stream", |
| 213 | + "text": [ |
| 214 | + " pcost dcost gap pres dres k/t\n", |
| 215 | + " 0: 0.0000e+00 -0.0000e+00 1e+02 4e+00 2e+01 1e+00\n", |
| 216 | + " 1: 4.1070e+00 4.4992e+00 2e+01 1e+00 4e+00 6e-01\n", |
| 217 | + " 2: 8.1702e+00 1.0088e+01 2e+02 2e+00 7e+00 2e+00\n", |
| 218 | + " 3: 1.3893e+01 1.4048e+01 1e+01 3e-01 1e+00 2e-01\n", |
| 219 | + " 4: 1.6870e+01 1.6949e+01 6e+00 1e-01 5e-01 1e-01\n", |
| 220 | + " 5: 1.8994e+01 1.9039e+01 3e+00 5e-02 2e-01 6e-02\n", |
| 221 | + " 6: 2.0385e+01 2.0392e+01 4e-01 7e-03 3e-02 8e-03\n", |
| 222 | + " 7: 2.0644e+01 2.0645e+01 5e-02 1e-03 4e-03 1e-03\n", |
| 223 | + " 8: 2.0685e+01 2.0685e+01 2e-03 3e-05 1e-04 4e-05\n", |
| 224 | + " 9: 2.0686e+01 2.0686e+01 1e-04 2e-06 7e-06 2e-06\n", |
| 225 | + "10: 2.0686e+01 2.0686e+01 4e-06 7e-08 3e-07 9e-08\n", |
| 226 | + "Optimal solution found.\n" |
| 227 | + ] |
| 228 | + } |
| 229 | + ], |
| 230 | + "source": [ |
| 231 | + "n = dn.A_optimize( matrix( s))" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": 12, |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [ |
| 239 | + { |
| 240 | + "data": { |
| 241 | + "text/plain": [ |
| 242 | + "array([[4.04384771, 0.9226813 , 0.87485767, 0.94890855, 0.85672638],\n", |
| 243 | + " [0.9226813 , 3.97632199, 0.89016928, 0.82843275, 0.90830927],\n", |
| 244 | + " [0.87485767, 0.89016928, 4.23165798, 0.98485259, 0.94333631],\n", |
| 245 | + " [0.94890855, 0.82843275, 0.98485259, 4.29673937, 0.9415661 ],\n", |
| 246 | + " [0.85672638, 0.90830927, 0.94333631, 0.9415661 , 4.13744 ]])" |
| 247 | + ] |
| 248 | + }, |
| 249 | + "execution_count": 12, |
| 250 | + "metadata": {}, |
| 251 | + "output_type": "execute_result" |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "dn.covariance( n/s**2)" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "markdown", |
| 260 | + "metadata": {}, |
| 261 | + "source": [ |
| 262 | + "The observed approximately equal diagonal elements may be attributable to similar $s_{ij}$ values in all the relative binding free energy calculations." |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": null, |
| 268 | + "metadata": { |
| 269 | + "collapsed": true |
| 270 | + }, |
| 271 | + "outputs": [], |
| 272 | + "source": [] |
| 273 | + } |
| 274 | + ], |
| 275 | + "metadata": { |
| 276 | + "kernelspec": { |
| 277 | + "display_name": "Python 2", |
| 278 | + "language": "python", |
| 279 | + "name": "python2" |
| 280 | + }, |
| 281 | + "language_info": { |
| 282 | + "codemirror_mode": { |
| 283 | + "name": "ipython", |
| 284 | + "version": 2 |
| 285 | + }, |
| 286 | + "file_extension": ".py", |
| 287 | + "mimetype": "text/x-python", |
| 288 | + "name": "python", |
| 289 | + "nbconvert_exporter": "python", |
| 290 | + "pygments_lexer": "ipython2", |
| 291 | + "version": "2.7.15" |
| 292 | + } |
| 293 | + }, |
| 294 | + "nbformat": 4, |
| 295 | + "nbformat_minor": 2 |
| 296 | +} |
0 commit comments