-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsilverbox_train_feedback.py
190 lines (148 loc) · 5.36 KB
/
silverbox_train_feedback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import time
from dynonet.lti import SisoLinearDynamicalOperator
from dynonet.static import SisoStaticNonLinearity
import dynonet.metrics
if __name__ == '__main__':
# In[Set seed for reproducibility]
np.random.seed(0)
torch.manual_seed(0)
# In[Settings]
lr = 1e-3
num_iter = 20000
test_freq = 100
n_fit = 40000
decimate = 1
n_batch = 1
n_b = 2
n_a = 2
n_k = 1
model_name = "silver_feedback"
# In[Load dataset]
COL_U = ['V1']
COL_Y = ['V2']
df_X = pd.read_csv(os.path.join("data", "SNLS80mV.csv"))
# In[Extract data]
y = np.array(df_X[COL_Y], dtype=np.float32)
u = np.array(df_X[COL_U], dtype=np.float32)
#u = u - np.mean(u)
fs = 10**7/2**14
N = y.size
ts = 1/fs
t = np.arange(N)*ts
# In[Get fit data]
y_fit = y[:n_fit:decimate]
u_fit = u[:n_fit:decimate]
t_fit = t[0:n_fit:decimate]
# In[Prepare data]
u_fit_torch = torch.tensor(u_fit[None, ...], dtype=torch.float, requires_grad=False)
y_fit_torch = torch.tensor(y_fit[None, ...], dtype=torch.float, requires_grad=False)
y_hidden_torch = torch.tensor(y_fit[None, ...], dtype=torch.float, requires_grad=True)
# optimize on the output to manage the feedback connection
# In[First dynamical system custom defined]
G1 = SisoLinearDynamicalOperator(n_b, n_a, n_k)
# Static non-linearity
F_nl = SisoStaticNonLinearity()
# Setup optimizer
optimizer = torch.optim.Adam([
{'params': G1.parameters(), 'lr': lr},
{'params': F_nl.parameters(), 'lr': lr},
{'params': [y_hidden_torch], 'lr': 1e-3},
], lr=lr)
# In[Structure]
# u ---> ----> G ------> y_lin
# |
# |
# y_nl <----- F <------ y_hidden (= y_lin, enforced by loss_consistency)
# The feedback loop is cut and the difference y_lin - y_hidden is penalized
# In[Train]
LOSS = []
LOSS_FIT = []
LOSS_CONSISTENCY = []
start_time = time.time()
for itr in range(0, num_iter):
optimizer.zero_grad()
# Simulate
y_nl = F_nl(y_hidden_torch)
y_lin = G1(u_fit_torch - y_nl)
# Compute fit loss
err_fit = y_fit_torch - y_lin
loss_fit = torch.mean(err_fit**2)
loss = loss_fit
# Compute consistency loss
err_consistency = y_lin - y_hidden_torch
loss_consistency = torch.mean(err_consistency**2)
loss = loss_fit + loss_consistency
LOSS.append(loss.item())
LOSS_CONSISTENCY.append(loss_consistency.item())
LOSS_FIT.append(loss_fit.item())
if itr % test_freq == 0:
with torch.no_grad():
RMSE = torch.sqrt(loss_fit)
print(f'Iter {itr} | Loss {loss:.8f} Fit Loss {loss_fit:.8f} Consistency Loss {loss_consistency:.8f} | RMSE:{RMSE:.4f}')
# Optimize
loss.backward()
if itr == 100:
pass
optimizer.step()
train_time = time.time() - start_time
print(f"\nTrain time: {train_time:.2f}") # 182 seconds
# In[Save model]
model_folder = os.path.join("models", model_name)
if not os.path.exists(model_folder):
os.makedirs(model_folder)
torch.save(G1.state_dict(), os.path.join(model_folder, "G1.pkl"))
torch.save(F_nl.state_dict(), os.path.join(model_folder, "F_nl.pkl"))
# In[Detach and reshape results]
y_hidden = y_hidden_torch.detach().numpy()[0, :, :]
y_lin = y_lin.detach().numpy()[0, :, :]
y_nl = y_nl.detach().numpy()[0, :, :]
# In[Plot]
plt.figure()
plt.plot(t_fit, y_fit, 'k', label="$y_{true}$")
plt.plot(t_fit, y_hidden, 'b', label="$y_{FB}$")
plt.plot(t_fit, y_lin, 'r', label="$y_{hat}$")
plt.legend()
plt.savefig(os.path.join(model_folder,'Feedback_fit.pdf'))
plt.show()
plt.figure()
plt.plot(LOSS, label='Total Loss')
plt.plot(LOSS_FIT, label='Output Loss')
plt.plot(LOSS_CONSISTENCY, label='Feedback Loss')
plt.grid(True)
plt.legend()
plt.savefig(os.path.join(model_folder,'Feedback_train_loss.pdf'))
plt.show()
# In[Plot static non-linearity]
y1_lin_min = np.min(y_lin) - 1e-6
y1_lin_max = np.max(y_lin) + 1e-6
in_nl = np.arange(y1_lin_min, y1_lin_max, (y1_lin_max- y1_lin_min)/1000).astype(np.float32).reshape(-1, 1)
with torch.no_grad():
out_nl = F_nl(torch.as_tensor(in_nl))
plt.figure()
plt.plot(in_nl, out_nl, 'b')
#plt.plot(y1_lin, y1_nl, 'b*')
plt.xlabel('Static non-linearity input (hat)')
plt.ylabel('Static non-linearity output (hat)')
plt.grid(True)
plt.savefig(os.path.join(model_folder,'F1_lin.pdf'))
plt.show()
idx_plot_nl = np.abs(in_nl) > 0.02
idx_plot_h = np.abs(y_hidden) > 0.02
plt.figure()
plt.plot(in_nl[idx_plot_nl], out_nl[idx_plot_nl]/in_nl[idx_plot_nl], 'b')
plt.plot(y_hidden[idx_plot_h], y_nl[idx_plot_h] / y_hidden[idx_plot_h], 'b*')
plt.xlabel('Static non-linearity input (FB)')
plt.ylabel('Static non-linearity output (FB)')
plt.savefig(os.path.join(model_folder,'F1_FB.pdf'))
plt.grid(True)
plt.show()
# In[Metrics]
e_rms = dynonet.metrics.error_rmse(y_fit, y_lin)[0]
fit_idx = dynonet.metrics.fit_index(y_fit, y_lin)[0]
r_sq = dynonet.metrics.r_squared(y_fit, y_lin)[0]
print(f"RMSE: {e_rms:.4f}V\nFIT: {fit_idx:.1f}%\nR_sq: {r_sq:.1f}")