-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathWH2009_test.py
160 lines (130 loc) · 4.95 KB
/
WH2009_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import pandas as pd
import numpy as np
import os
from dynonet.lti import SisoLinearDynamicalOperator
from dynonet.static import SisoStaticNonLinearity
import matplotlib
import matplotlib.pyplot as plt
import control
import dynonet.metrics
# In[Main]
if __name__ == '__main__':
matplotlib.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']})
# In[Settings]
#model_name = 'model_WH_digit'
model_name = "model_WH_proc_noise"
# Settings
n_b = 8
n_a = 8
# Column names in the dataset
COL_F = ['fs']
COL_U = ['uBenchMark']
COL_Y = ['yBenchMark']
# Load dataset
df_X = pd.read_csv(os.path.join("data", "WienerHammerBenchmark.csv"))
# Extract data
y_meas = np.array(df_X[COL_Y], dtype=np.float32)
u = np.array(df_X[COL_U], dtype=np.float32)
fs = np.array(df_X[COL_F].iloc[0], dtype=np.float32).item()
N = y_meas.size
ts = 1/fs
t = np.arange(N)*ts
t_fit_start = 0
t_fit_end = 100000
t_test_start = 100000
t_test_end = 188000
t_skip = 1000 # skip for statistics
# In[Instantiate models]
# Create models
G1 = SisoLinearDynamicalOperator(n_b=n_b, n_a=n_a, n_k=1)
G2 = SisoLinearDynamicalOperator(n_b=n_b, n_a=n_a, n_k=0)
F_nl = SisoStaticNonLinearity(n_hidden=10, activation='tanh')
model_folder = os.path.join("models", model_name)
# Create model parameters
G1.load_state_dict(torch.load(os.path.join(model_folder, "G1.pkl")))
F_nl.load_state_dict(torch.load(os.path.join(model_folder, "F_nl.pkl")))
G2.load_state_dict(torch.load(os.path.join(model_folder, "G2.pkl")))
# In[Predict]
u_torch = torch.tensor(u[None, :, :])
y1_lin = G1(u_torch)
y1_nl = F_nl(y1_lin)
y_hat = G2(y1_nl)
# In[Detach]
y_hat = y_hat.detach().numpy()[0, :, :]
y1_lin = y1_lin.detach().numpy()[0, :, :]
y1_nl = y1_nl.detach().numpy()[0, :, :]
# In[Plot]
plt.figure()
plt.plot(t, y_meas, 'k', label="$y$")
plt.plot(t, y_hat, 'b', label="$\hat y$")
plt.plot(t, y_meas - y_hat, 'r', label="$e$")
plt.grid(True)
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.legend(loc='upper right')
# plt.savefig('WH_fit.pdf')
plt.show()
# In[Inspect linear model]
n_imp = 128
G1_num, G1_den = G1.get_tfdata()
G1_sys = control.TransferFunction(G1_num, G1_den, ts)
plt.figure()
plt.title("$G_1$ impulse response")
_, y_imp = control.impulse_response(G1_sys, np.arange(n_imp) * ts)
# plt.plot(G1_num)
plt.plot(y_imp)
# plt.savefig(os.path.join("models", model_name, "G1_imp.pdf"))
plt.show()
plt.figure()
mag_G1, phase_G1, omega_G1 = control.bode(G1_sys, omega_limits=[1e2, 1e5])
plt.suptitle("$G_1$ bode plot")
# plt.savefig(os.path.join("models", model_name, "G1_bode.pdf"))
plt.show()
# G2_b = G2.G.weight.detach().numpy()[0, 0, ::-1]
G2_num, G2_den = G2.get_tfdata()
G2_sys = control.TransferFunction(G2_num, G2_den, ts)
plt.figure()
plt.title("$G_2$ impulse response")
_, y_imp = control.impulse_response(G2_sys, np.arange(n_imp) * ts)
plt.plot(y_imp)
# plt.savefig(os.path.join("models", model_name, "G1_imp.pdf"))
plt.show()
plt.figure()
mag_G2, phase_G2, omega_G2 = control.bode(G2_sys, omega_limits=[1e2, 1e5])
plt.suptitle("$G_2$ bode plot")
# plt.savefig(os.path.join("models", model_name, "G2_bode.pdf"))
plt.show()
# In[Inspect static non-linearity]
y1_lin_min = np.min(y1_lin)
y1_lin_max = np.max(y1_lin)
in_nl = np.arange(y1_lin_min, y1_lin_max, (y1_lin_max- y1_lin_min)/1000).astype(np.float32).reshape(-1, 1)
with torch.no_grad():
out_nl = F_nl(torch.as_tensor(in_nl))
plt.figure()
plt.plot(in_nl, out_nl, 'b')
plt.plot(in_nl, out_nl, 'b')
plt.xlabel('Static non-linearity input (-)')
plt.ylabel('Static non-linearity input (-)')
plt.grid(True)
plt.show()
# In[Metrics]
idx_test = range(t_test_start + t_skip, t_test_end)
e_rms = 1000*dynonet.metrics.error_rmse(y_meas[idx_test], y_hat[idx_test])[0]
fit_idx = dynonet.metrics.fit_index(y_meas[idx_test], y_hat[idx_test])[0]
r_sq = dynonet.metrics.r_squared(y_meas[idx_test], y_hat[idx_test])[0]
print(f"RMSE: {e_rms:.1f}V\nFIT: {fit_idx:.1f}%\nR_sq: {r_sq:.4f}")
# In[Plot for paper]
t_test_start = 140000
len_plot = 1000
plt.figure(figsize=(4, 3))
plt.plot(t[t_test_start:t_test_start+len_plot], y_meas[t_test_start:t_test_start+len_plot], 'k', label="$\mathbf{y}^{\mathrm{meas}}$")
plt.plot(t[t_test_start:t_test_start+len_plot], y_hat[t_test_start:t_test_start+len_plot], 'b--', label="$\mathbf{y}$")
plt.plot(t[t_test_start:t_test_start+len_plot], y_meas[t_test_start:t_test_start+len_plot] - y_hat[t_test_start:t_test_start+len_plot], 'r', label="$\mathbf{e}$")
plt.grid(True)
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.legend(loc='upper right')
plt.tight_layout()
# plt.savefig('WH_timetrace.pdf')
plt.show()