Skip to content

Commit d9e6f3f

Browse files
committed
Fix Gaussian distribution formula
1 parent 3369013 commit d9e6f3f

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

Diff for: doc/specs/stdlib_stats_distribution_normal.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -64,11 +64,11 @@ Experimental
6464

6565
The probability density function (pdf) of the single real variable normal distribution:
6666

67-
$$f(x) = \frac{1}{\sigma \sqrt{2}} \exp{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$$
67+
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$$
6868

6969
For a complex varible \( z=(x + y i) \) with independent real \( x \) and imaginary \( y \) parts, the joint probability density function is the product of the the corresponding real and imaginary marginal pdfs:[^2]
7070

71-
$$f(x + y \mathit{i}) = f(x) f(y) = \frac{1}{2\sigma_{x}\sigma_{y}} \exp{\left[-\frac{1}{2}\left(\left(\frac{x-\mu_x}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_y}{\sigma_{y}}\right)^{2}\right)\right]}$$
71+
$$f(x + y \mathit{i}) = f(x) f(y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}} \exp{\left[-\frac{1}{2}\left(\left(\frac{x-\mu_x}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_y}{\sigma_{y}}\right)^{2}\right)\right]}$$
7272

7373
### Syntax
7474

0 commit comments

Comments
 (0)