-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy path__init__.py
116 lines (95 loc) · 4.2 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import folder_paths
import os
import ffmpeg
from PIL import Image
import cv2
from tqdm import tqdm
import re
import torch
from .nodes import PoseGenVideo, RefImagePath, Audio2Video, AudioPath #,GenerateRefPose
from .src.utils.util import get_fps, read_frames, save_videos_from_pil, calculate_file_hash, get_sorted_dir_files_from_directory, get_audio, lazy_eval, hash_path, validate_path
import numpy as np
from .src.utils.draw_util import FaceMeshVisualizer
from .src.utils.mp_utils import LMKExtractor
video_extensions = ['webm', 'mp4', 'mkv', 'gif']
class VideoGenPose:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "AniPortrait"}),
"height": ("INT", {"default": 512, "min": 0, "max": 1024, "step": 1}),
"width": ("INT", {"default": 512, "min": 0, "max": 1024, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("pose_images",)
OUTPUT_NODE = True
CATEGORY = "AniPortrait 🎥Video"
FUNCTION = "generate_pose_video"
def generate_pose_video(self, image, filename_prefix, height, width):
frames = (image.numpy() * 255).astype(np.uint8)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer(forehead_edge=False)
kps_results = []
for i, frame_pil in enumerate(tqdm(frames)):
image_np = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)
image_np = cv2.resize(image_np, (height, width))
face_result = lmk_extractor(image_np)
try:
lmks = face_result['lmks'].astype(np.float32)
pose_img = vis.draw_landmarks((image_np.shape[1], image_np.shape[0]), lmks, normed=True)
pose_img = Image.fromarray(cv2.cvtColor(pose_img, cv2.COLOR_BGR2RGB))
except:
pose_img = kps_results[-1]
kps_results.append(pose_img)
iterable = (x for x in kps_results)
images = torch.from_numpy(np.fromiter(iterable, np.dtype((np.float32, (height, width, 3)))))
return (images,)
class LoadVideoPath:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video": ("STRING", {"default": "X://insert/path/here.mp4", "aniportrait_path_extensions": video_extensions}),
},
}
CATEGORY = "AniPortrait 🎥Video"
RETURN_TYPES = ("AniPortrait_Video", "IMAGE", "Frame_per_second", "AniPortrait_Audio", )
RETURN_NAMES = ("video", "frames", "frame_per_second", "audio",)
FUNCTION = "load_video"
def load_video(self, **kwargs):
if kwargs['video'] is None or validate_path(kwargs['video']) != True:
raise Exception("video is not a valid path: " + kwargs['video'])
return load_video_av(**kwargs)
@classmethod
def IS_CHANGED(s, video, **kwargs):
return hash_path(video)
@classmethod
def VALIDATE_INPUTS(s, video, **kwargs):
return validate_path(video, allow_none=True)
def load_video_av(video: str):
fps = get_fps(video)
frames = read_frames(video)
input_dir = folder_paths.get_output_directory()
audio_output = os.path.join(input_dir, 'audio_from_video.aac')
return (video, frames, fps, audio_output)
NODE_CLASS_MAPPINGS = {
"AniPortrait_Video_Gen_Pose": VideoGenPose,
"AniPortrait_LoadVideoPath": LoadVideoPath,
"AniPortrait_Pose_Gen_Video": PoseGenVideo,
"AniPortrait_Ref_Image_Path": RefImagePath,
# "AniPortrait_Generate_Ref_Pose": GenerateRefPose,
"AniPortrait_Audio2Video": Audio2Video,
"AniPortrait_Audio_Path": AudioPath,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"AniPortrait_Video_Gen_Pose": "Video MediaPipe Face Detection🎥AniPortrait",
"AniPortrait_LoadVideoPath": "Load Video (Path) 🎥AniPortrait",
"AniPortrait_Pose_Gen_Video": "Pose Generate Video 🎥AniPortrait",
"AniPortrait_Ref_Image_Path": "Ref Image Path 🎥AniPortrait",
# "AniPortrait_Generate_Ref_Pose": "Generate Ref Pose 🎥AniPortrait",
"AniPortrait_Audio2Video": "Audio Gen Video 🎥AniPortrait",
"AniPortrait_Audio_Path": "Audio Path 🎥AniPortrait",
}