forked from gorgonia/gorgonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathop_nn.go
150 lines (131 loc) · 3.88 KB
/
op_nn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
package gorgonia
import (
"fmt"
"hash"
"hash/fnv"
"time"
tf32 "github.com/chewxy/gorgonia/tensor/f32"
tf64 "github.com/chewxy/gorgonia/tensor/f64"
"github.com/chewxy/gorgonia/tensor/types"
"github.com/chewxy/hm"
"github.com/leesper/go_rng"
"github.com/pkg/errors"
)
/*
This file contains all the Ops related to building a neural network.
Bear in mind that not all things that are related to a neural network are here, as not everything
are encoded as Ops the way theano does it.
See also: nn.go for functions that relate to neural networks
*/
type randomness byte
const (
uniform randomness = iota
gaussian
binomial
)
type randomOp struct {
which randomness
shape types.Shape
dt Dtype
a, b float64 // when uniform, a,b = low, high; when gaussian, a,b = mean, stdev
}
func makeRandomOp(which randomness, dt Dtype, a, b float64, shape ...int) randomOp {
return randomOp{
which: which,
shape: types.Shape(shape),
dt: dt,
a: a,
b: b,
}
}
func (op randomOp) Arity() int { return 0 }
// randomOp :: a
// randomOp :: Tensor a
func (op randomOp) Type() hm.Type {
if op.shape.IsScalar() {
return op.dt
}
tt := newTensorType(op.shape.Dims(), op.dt)
return tt
}
func (op randomOp) InferShape(...DimSizer) (types.Shape, error) { return op.shape, nil }
func (op randomOp) Do(...Value) (retVal Value, err error) {
if op.shape.IsScalar() {
var v interface{}
switch op.dt {
case Float64:
switch op.which {
case uniform:
rand := rng.NewUniformGenerator(time.Now().UnixNano())
v = rand.Float64Range(op.a, op.b)
case gaussian:
rand := rng.NewGaussianGenerator(time.Now().UnixNano())
v = rand.Gaussian(op.a, op.b)
case binomial:
rand := rng.NewBinomialGenerator(time.Now().UnixNano())
v = float64(rand.Binomial(int64(op.a), op.b))
}
case Float32:
switch op.which {
case uniform:
rand := rng.NewUniformGenerator(time.Now().UnixNano())
v = rand.Float32Range(float32(op.a), float32(op.b))
case gaussian:
rand := rng.NewGaussianGenerator(time.Now().UnixNano())
v = float32(rand.Gaussian(op.a, op.b))
case binomial:
rand := rng.NewBinomialGenerator(time.Now().UnixNano())
v = float32(rand.Binomial(int64(op.a), op.b))
}
default:
return nil, errors.Errorf(nyiFail, "randomOp.do()", op.dt)
}
retVal, _ = anyToScalar(v)
return
}
switch op.dt {
case Float64:
switch op.which {
case uniform:
backing := Uniform64(op.a, op.b, op.shape...)
retVal = tf64.NewTensor(tf64.WithBacking(backing), tf64.WithShape(op.shape...))
case gaussian:
backing := Gaussian64(op.a, op.b, op.shape...)
retVal = tf64.NewTensor(tf64.WithBacking(backing), tf64.WithShape(op.shape...))
case binomial:
backing := Binomial64(op.a, op.b, op.shape...)
retVal = tf64.NewTensor(tf64.WithBacking(backing), tf64.WithShape(op.shape...))
}
return
case Float32:
switch op.which {
case uniform:
backing := Uniform32(op.a, op.b, op.shape...)
retVal = tf32.NewTensor(tf32.WithBacking(backing), tf32.WithShape(op.shape...))
case gaussian:
backing := Gaussian32(op.a, op.b, op.shape...)
retVal = tf32.NewTensor(tf32.WithBacking(backing), tf32.WithShape(op.shape...))
case binomial:
backing := Binomial32(op.a, op.b, op.shape...)
retVal = tf32.NewTensor(tf32.WithBacking(backing), tf32.WithShape(op.shape...))
}
return
default:
return nil, errors.Errorf(nyiFail, "randomOp.do() for non-scalar", op.dt)
}
panic("Unreachable")
}
func (op randomOp) ReturnsPtr() bool { return false }
func (op randomOp) CallsExtern() bool { return false }
func (op randomOp) OverwritesInput() int { return -1 }
func (op randomOp) WriteHash(h hash.Hash) {
fmt.Fprintf(h, "%d%v%f%f", op.which, op.shape, op.a, op.b)
}
func (op randomOp) Hashcode() uint32 {
h := fnv.New32a()
op.WriteHash(h)
return h.Sum32()
}
func (op randomOp) String() string {
return fmt.Sprintf("%v(%v, %v) - %v", op.which, op.a, op.b, op.shape)
}