forked from gorgonia/gorgonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperatorLinAlg.go
330 lines (288 loc) · 7.85 KB
/
operatorLinAlg.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
package gorgonia
import (
"github.com/chewxy/hm"
"github.com/pkg/errors"
)
// ā and Ā are used to denote that it's a matrix/vector type.
// if you want to type it, it's Latin Letter A with Macron (lowercase and capital)
// Codepoints : U+101 for the small one, and U+100 for the capital one
type āBinaryOperator byte
const (
matMulOperator āBinaryOperator = iota // emits S/DGEMM BLAS calls
matVecMulOperator // emits S/DGEMV BLAS calls
vecDotOperator // emits S/DDOT BLAS calls
outerProdOperator // emits S/DGER BLAS calls
maxĀBinaryOperator // delimits all possible linalg operators. Add above this line
)
func (op āBinaryOperator) String() string {
if op >= maxĀBinaryOperator {
return "UNSUPPORTED LINEAR ALGEBRA OPERATOR"
}
return āBinOpStrs[op]
}
func (op āBinaryOperator) Type() hm.Type {
if op >= maxĀBinaryOperator {
panic("UNSUPPORTED LINEAR ALGEBRA OPERATOR")
}
return āBinOpTypes[op]()
}
func (op āBinaryOperator) DiffWRT(inputs int) []bool {
if inputs != 2 {
panic("binary linear algebra operator only supports two and only two inputs")
}
if op >= maxĀBinaryOperator {
panic("Unsupported unary operator is not differentiable")
}
return []bool{true, true}
}
// todo: write explanation.
func matMulDiffExpr(transA, transB bool, x, y, z, gradZ *Node) (retVal Nodes, err error) {
var dzdx, dzdy *Node
op := linAlgBinOp{
āBinaryOperator: matMulOperator,
}
switch {
case transA && transB:
op.transA = transA
op.transB = transB
if dzdx, err = binOpNode(op, y, gradZ); err == nil {
dzdy, err = binOpNode(op, gradZ, x)
} else {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
case !transA && transB:
if dzdx, err = binOpNode(op, gradZ, y); err == nil {
op.transA = true
dzdy, err = binOpNode(op, gradZ, x)
if err != nil {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
} else {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
case transA && !transB:
op.transB = true
if dzdx, err = binOpNode(op, y, gradZ); err == nil {
op.transB = false
dzdy, err = binOpNode(op, x, gradZ)
if err != nil {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
} else {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
case !transA && !transB:
op.transA = false
op.transB = true
if dzdx, err = binOpNode(op, gradZ, y); err == nil {
op.transA = true
op.transB = false
dzdy, err = binOpNode(op, x, gradZ)
if err != nil {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
} else {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
}
retVal = Nodes{dzdx, dzdy}
return
}
func matMulDiff(transA, transB bool, x, y, z *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
zdv := z.boundTo.(*dualValue)
op := linAlgBinOp{
āBinaryOperator: matMulOperator,
}
switch {
case transA && transB:
op.transA = transA
op.transB = transB
// dzdx
err = op.IncrDo(xdv.d, ydv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
// dzdy
err = op.IncrDo(ydv.d, zdv.d, xdv.Value)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
case !transA && transB:
// dzdx
err = op.IncrDo(xdv.d, zdv.d, ydv.Value)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
// dzdy
op.transA = true
err = op.IncrDo(ydv.d, zdv.d, xdv.Value)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
case transA && !transB:
// dzdx
op.transB = true
err = op.IncrDo(xdv.d, ydv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
// dzdy
op.transA = false
op.transB = false
err = op.IncrDo(ydv.d, xdv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
return
case !transA && !transB:
op.transB = true
err = op.IncrDo(xdv.d, zdv.d, ydv.Value)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
op.transA = true
op.transB = false
err = op.IncrDo(ydv.d, xdv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
panic("unreachable")
}
func matVecMulDiffExpr(transA, transB bool, x, y, z, gradZ *Node) (retVal Nodes, err error) {
var dzdx, dzdy *Node
if transA {
dzdx, err = OuterProd(y, gradZ)
} else {
dzdx, err = OuterProd(gradZ, y)
}
if err != nil {
return nil, errors.Wrap(err, "Failed to carry outper product")
}
op := linAlgBinOp{
āBinaryOperator: matVecMulOperator,
transA: !transA,
}
if dzdy, err = binOpNode(op, x, gradZ); err == nil {
retVal = Nodes{dzdx, dzdy}
} else {
return nil, errors.Wrapf(err, binOpNodeFail, op)
}
// if dzdx, err = OuterProd(gradZ, y); err == nil {
// op := linAlgBinOp{
// āBinaryOperator: matVecMulOperator,
// transA: !transA,
// }
// if dzdy, err = binOpNode(op, x, gradZ); err == nil {
// retVal = Nodes{dzdx, dzdy}
// }
// }
return
}
func matVecMulDiff(transA, transB bool, x, y, z *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
zdv := z.boundTo.(*dualValue)
op := linAlgBinOp{
āBinaryOperator: outerProdOperator,
}
if transA {
err = op.IncrDo(xdv.d, ydv.Value, zdv.d)
} else {
err = op.IncrDo(xdv.d, zdv.d, ydv.Value)
}
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
op = linAlgBinOp{
āBinaryOperator: matVecMulOperator,
transA: !transA,
}
err = op.IncrDo(ydv.d, xdv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func vecDotDiffExpr(transA, transB bool, x, y, z, gradZ *Node) (retVal Nodes, err error) {
var dzdx, dzdy *Node
if dzdx, err = HadamardProd(y, gradZ); err == nil {
if dzdy, err = HadamardProd(x, gradZ); err == nil {
retVal = Nodes{dzdx, dzdy}
} else {
return nil, errors.Wrap(err, "Failed to carry HadamardProd()")
}
} else {
return nil, errors.Wrap(err, "Failed to carry HadamardProd()")
}
return
}
func vecDotDiff(transA, transB bool, x, y, z *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
zdv := z.boundTo.(*dualValue)
mul := newElemBinOp(mulOpType, x, z)
err = mul.IncrDo(xdv.d, ydv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
err = mul.IncrDo(ydv.d, xdv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func outerProdDiffExpr(transA, transB bool, x, y, z, gradZ *Node) (retVal Nodes, err error) {
var dzdx, dzdy *Node
if dzdx, err = Mul(x, gradZ); err == nil {
if dzdy, err = Mul(y, gradZ); err == nil {
retVal = Nodes{dzdx, dzdy}
} else {
return nil, errors.Wrap(err, "Failed to carry Mul()")
}
} else {
return nil, errors.Wrap(err, "Failed to carry Mul()")
}
return
}
func outerProdDiff(transA, transB bool, x, y, z *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
zdv := z.boundTo.(*dualValue)
mul := newElemBinOp(mulOpType, x, z)
err = mul.IncrDo(xdv.d, xdv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
} else if err != nil {
return
}
err = mul.IncrDo(ydv.d, ydv.Value, zdv.d)
if ver, ok := err.(Valuer); ok {
ydv.SetDeriv(ver.Value()) // ignore errors on purpose
return
}
return
}