-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathalgorithms.py
144 lines (103 loc) · 3.47 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
from math import copysign
from math import exp
from math import floor
from scipy.stats import laplace
from scipy.stats import norm
def epsilon(e, ratio=1):
e1 = e/(1+ratio)
e2 = e - e1
return e1, e2
def factor(monotonic):
return 1 if monotonic else 2
def scale(e1, e2, c=1, sensitivity=1, monotonic=True):
m = factor(monotonic)
s1 = sensitivity / e1
s2 = sensitivity * m * c / e2
return s1, s2
def report_noisy_max(database, queries, epsilon):
return [Laplace(1/epsilon, database[q]) for q in queries]
def sparse(database, queries, threshold, epsilon, ratio,
c=1, sensitivity=1, monotonic=True):
"""
since this is an abstraction to random distributions, and we have no
obvious way to halt after some condition is met, it is
the caller's obligation to sample from the distributions and cut off
the result when `c` positive answers are collected.
"""
e1, e2 = epsilon(epsilon, ratio)
s1, s2 = scale(e1, e2, c, sensitivity, monotonic)
T = Laplace(s1, threshold)
return T, [Laplace(s2, database[q]) for q in queries]
def exponential(database, utility, epsilon, sensitivity=1, monotonic=True):
m = factor(monotonic)
def weight(x):
return exp((epsilon*utility(database[x]))/(m*sensitivity))
normalization = sum(weight(x) for x in database)
def distribution(x):
return weight(x) / normalization
return disribution
class Distribution(object):
def __init__(self, scale, loc=0):
self.scale = scale
self.loc = loc
def __call__(self, x):
return self.pdf(x)
def larger(self, other):
return 1 - self.differenceCDF(other)(0)
class Laplace(Distribution):
"""Laplace distribution"""
def pdf(self, x):
return laplace.pdf(x, scale=self.scale, loc=self.loc)
def cdf(self, x):
return laplace.cdf(x, scale=self.scale, loc=self.loc)
def difference(self, other):
"""difference of two Laplace distributions"""
a = self.scale
b = other.scale
m = self.loc
n = other.loc
def diff(x):
t = abs(x+n-m)
k = exp(-t/a)
l = exp(-t/b)
if a == b:
return (k + (t/a)*k) / (4*a)
else:
return ((k+l)/(a+b) + (k-l)/(a-b)) / 4
return diff
def differenceCDF(self, other):
a = self.scale
b = other.scale
m = self.loc
n = other.loc
def diffCDF(x):
t = abs(x+n-m)
s = sgn(x+n-m)
k = exp(-t/a)
l = exp(-t/b)
if a == b:
return (-s * (2*a+t)*k / (2*a) + 1 + s)/2
else:
return (-s * ((a*k + b*l)/(a+b) + (a*k - b*l)/(a-b)) / 2 + 1 + s)/2
return diffCDF
class Gaussian(Distribution):
"""Gaussian distribution"""
def pdf(self, x):
return norm.pdf(x, scale=self.scale, loc=self.loc)
def cdf(self, x):
return norm.cdf(x, scale=self.scale, loc=self.loc)
def difference(self, other):
def diff(x):
b = self.scale**2 + other.scale**2
m = self.loc - other.loc
return norm.pdf(x, scale=b, loc=m)
return diff
def differenceCDF(self, other):
def diffCDF(x):
b = self.scale**2 + other.scale**2
m = self.loc - other.loc
return norm.cdf(x, scale=b, loc=m)
return diffCDF
def sgn(x):
return copysign(1, x)