-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2nd_deg_pol_root.py
76 lines (74 loc) · 2.32 KB
/
2nd_deg_pol_root.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import functions as fc
while True:
coef_list = list()
for i in range(0, 3):
while True:
coef = input(f"Coefficient of term number {i+1}: ").strip()
try:
coef = int(coef)
break
except:
print("This is not a valid answer.")
continue
coef_list.append(coef)
a = coef_list[0]
b = coef_list[1]
c = coef_list[2]
if a == 0:
if b == 0:
print(f"This is the constant polynomial {c}.")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
else:
if c == 0:
print(f"The polynomial is {b}*x and its root is x = 0.")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
else:
print(f"The polynomial is {b}*x + {c} and its root is {(-c)/b}.")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
else :
Δ = b**2 - 4*a*c
print(Δ)
if Δ < 0 :
if a < 0:
print("The polynomial has no real roots and is negative for every x in R.")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
elif a > 0 :
print("The polynomial has no real roots and is positive for every x in R.")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
elif Δ == 0:
print(f"The polynomial has a double root, which is {(-b)/a}.")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
elif Δ > 0:
x1 = ((-b) + Δ**(1/2)) / (2*a)
x2 = ((-b) - Δ**(1/2)) / (2*a)
print(f"The polynomial has two roots which are:\nx1: {x1}\nx2: {x2}")
othpol = fc.other_pol()
if othpol == 'y':
continue
else:
break
print("Shutting down...")