-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_manager.py
125 lines (105 loc) · 3.98 KB
/
openai_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import time
from openai import OpenAI
from rich import print
from dotenv import load_dotenv
import os
import tiktoken
# Just in case this file is loaded alone
load_dotenv(dotenv_path=".env.local")
TOKEN_LIMT = 8000
WINDOW = 60 * 60 # 1 hour
def num_tokens_from_messages(messages, model="gpt-4o"):
"""Returns the number of tokens used by a list of messages.
Copied with minor changes from: https://platform.openai.com/docs/guides/chat/managing-tokens
"""
try:
encoding = tiktoken.encoding_for_model(model)
num_tokens = 0
for message in messages:
num_tokens += (
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
)
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
except Exception:
raise NotImplementedError(
f"""num_tokens_from_messages() is not presently implemented for model {model}.
#See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
class OpenAiManager:
system_prompt: str | None = None
def __init__(self):
self.chat_history = []
try:
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
except Exception as e:
print(e)
exit("invalid OpenAI key")
def chat(
self,
msg,
skip_history=False,
single_prompt=False,
override_system: str | None = None,
):
if not msg:
return print("[red]Empty message[/red]")
prompt = {"role": "user", "content": msg, "timestamp": time.time()}
if not skip_history:
self.chat_history.append(prompt)
if single_prompt:
msgs = [{k: v for (k, v) in prompt.items() if k != "timestamp"}]
else:
msgs = self.process_msgs()
# add system prompt
if self.system_prompt:
msgs.insert(
0,
{
"role": "system",
"content": (
override_system if override_system else self.system_prompt
),
},
)
if not self.check_tokens(msgs):
return
return self.chat_completion(msgs)
def process_msgs(self):
window_cutoff = time.time() - WINDOW
# Make a msg list for chatgpt with timestamp removed
return [
{k: v for (k, v) in msg.items() if k != "timestamp"}
for msg in self.chat_history
if msg["timestamp"] > window_cutoff
]
def check_tokens(self, msgs) -> bool:
tokens = num_tokens_from_messages(msgs)
print(f"[bold]Token usage: {tokens} tokens...")
if tokens > TOKEN_LIMT:
return print(
"The length of this chat question is too large for the GPT model"
)
return tokens <= TOKEN_LIMT
def chat_completion(self, msgs):
print("[yellow]Asking ChatGPT...")
completion = self.client.chat.completions.create(
model="gpt-4o-mini", messages=msgs
)
answer = completion.choices[0].message.content
print(f"[green]\n{answer}\n")
return answer
# testing stuff
if __name__ == "__main__":
openai_manager = OpenAiManager()
openai_manager.system_prompt = {
"role": "system",
"content": "Act like you are drunk but are trying to pass off that you are completely sober ",
}
while True:
new_prompt = input("Ask me something?")
openai_manager.chat(new_prompt)