-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfirefly.py
71 lines (67 loc) · 2.65 KB
/
firefly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Federico Tondolo
# Summer 2019 at the Columbia University Medical Center
import numpy as np
import ffmpy
import cv2
import os
import subprocess
video_length=40
prologue=20
safe_space=20
def main():
# Creating OUTPUT directory
os.mkdir('OUTPUT')
# Loops for every file inside current dir
for filename in os.listdir('.'):
# If file is a video file
if (filename.endswith(".wmv")):
cap = cv2.VideoCapture(filename)
# Initialisation of frame_counting variable
frame_count=0
# Initialisation of lightbulb activations count
count=0
# Initialisation of variable defining the next valid frame
next_valid=0
# Loop as long as there's a frame to analyze
while cap.grab():
# Adding current frame to frame counter
frame_count+=1
# If frame is bit within 21 seconds of first trigger
if (frame_count>=next_valid):
# Initialisation of supporting variables
flag, frame = cap.retrieve()
# Frame manipulation begins here
mask = np.zeros(frame.shape, dtype=np.uint8)
# Defining of ROI
roi_corners = np.array([[(70,33), (100,25), (165, 45), (165,55)]], dtype=np.int32)
# FIlling the ROI
ignore_mask_color = (255,)*2
cv2.fillPoly(mask, roi_corners, ignore_mask_color)
# Applying the mask
masked_image = cv2.bitwise_and(frame, mask)
# Blurring and brightening the resulting frame
blur = cv2.blur(masked_image,(6,4))
brightest = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)[1]
if finder(brightest):
count+=1
start= (frame_count/30)-prologue
next_valid=((start+prologue+video_length)*30)
subprocess.call(['ffmpeg', '-i', filename, '-ss', str(start), '-t', str(video_length), ('./OUTPUT/output_'+filename[:-4]+'-'+str(count)+'.wmv')])
# If file is not a video
else:
continue
def finder(im):
# Set up the detector with necessary parameters
params = cv2.SimpleBlobDetector_Params()
params.filterByColor = 1
params.blobColor=255
params.filterByArea = 1
params.maxArea=150
params.minArea=25
detector = cv2.SimpleBlobDetector_create(params)
# Detect blobs
keypoints = detector.detect(im)
# Blob detected
if len(keypoints):
return 1
main()