-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
475 lines (401 loc) · 19.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import ctypes
import sys
import os
import subprocess
import resource
import threading
import time
import argparse
import json
from flask import Flask, request, jsonify, Response
app = Flask(__name__)
PROMPT_TEXT_PREFIX = "<|im_start|>system You are a helpful assistant. <|im_end|> <|im_start|>user"
PROMPT_TEXT_POSTFIX = "<|im_end|><|im_start|>assistant"
# Set the dynamic library path
rkllm_lib = ctypes.CDLL('/lib/librkllmrt.so')
# Define the structures from the library
RKLLM_Handle_t = ctypes.c_void_p
userdata = ctypes.c_void_p(None)
LLMCallState = ctypes.c_int
LLMCallState.RKLLM_RUN_NORMAL = 0
LLMCallState.RKLLM_RUN_WAITING = 1
LLMCallState.RKLLM_RUN_FINISH = 2
LLMCallState.RKLLM_RUN_ERROR = 3
LLMCallState.RKLLM_RUN_GET_LAST_HIDDEN_LAYER = 4
RKLLMInputMode = ctypes.c_int
RKLLMInputMode.RKLLM_INPUT_PROMPT = 0
RKLLMInputMode.RKLLM_INPUT_TOKEN = 1
RKLLMInputMode.RKLLM_INPUT_EMBED = 2
RKLLMInputMode.RKLLM_INPUT_MULTIMODAL = 3
RKLLMInferMode = ctypes.c_int
RKLLMInferMode.RKLLM_INFER_GENERATE = 0
RKLLMInferMode.RKLLM_INFER_GET_LAST_HIDDEN_LAYER = 1
class RKLLMExtendParam(ctypes.Structure):
_fields_ = [
("base_domain_id", ctypes.c_int32),
("reserved", ctypes.c_uint8 * 112)
]
class RKLLMParam(ctypes.Structure):
_fields_ = [
("model_path", ctypes.c_char_p),
("max_context_len", ctypes.c_int32),
("max_new_tokens", ctypes.c_int32),
("top_k", ctypes.c_int32),
("top_p", ctypes.c_float),
("temperature", ctypes.c_float),
("repeat_penalty", ctypes.c_float),
("frequency_penalty", ctypes.c_float),
("presence_penalty", ctypes.c_float),
("mirostat", ctypes.c_int32),
("mirostat_tau", ctypes.c_float),
("mirostat_eta", ctypes.c_float),
("skip_special_token", ctypes.c_bool),
("is_async", ctypes.c_bool),
("img_start", ctypes.c_char_p),
("img_end", ctypes.c_char_p),
("img_content", ctypes.c_char_p),
("extend_param", RKLLMExtendParam),
]
class RKLLMLoraAdapter(ctypes.Structure):
_fields_ = [
("lora_adapter_path", ctypes.c_char_p),
("lora_adapter_name", ctypes.c_char_p),
("scale", ctypes.c_float)
]
class RKLLMEmbedInput(ctypes.Structure):
_fields_ = [
("embed", ctypes.POINTER(ctypes.c_float)),
("n_tokens", ctypes.c_size_t)
]
class RKLLMTokenInput(ctypes.Structure):
_fields_ = [
("input_ids", ctypes.POINTER(ctypes.c_int32)),
("n_tokens", ctypes.c_size_t)
]
class RKLLMMultiModelInput(ctypes.Structure):
_fields_ = [
("prompt", ctypes.c_char_p),
("image_embed", ctypes.POINTER(ctypes.c_float)),
("n_image_tokens", ctypes.c_size_t)
]
class RKLLMInputUnion(ctypes.Union):
_fields_ = [
("prompt_input", ctypes.c_char_p),
("embed_input", RKLLMEmbedInput),
("token_input", RKLLMTokenInput),
("multimodal_input", RKLLMMultiModelInput)
]
class RKLLMInput(ctypes.Structure):
_fields_ = [
("input_mode", ctypes.c_int),
("input_data", RKLLMInputUnion)
]
class RKLLMLoraParam(ctypes.Structure):
_fields_ = [
("lora_adapter_name", ctypes.c_char_p)
]
class RKLLMPromptCacheParam(ctypes.Structure):
_fields_ = [
("save_prompt_cache", ctypes.c_int),
("prompt_cache_path", ctypes.c_char_p)
]
class RKLLMInferParam(ctypes.Structure):
_fields_ = [
("mode", RKLLMInferMode),
("lora_params", ctypes.POINTER(RKLLMLoraParam)),
("prompt_cache_params", ctypes.POINTER(RKLLMPromptCacheParam))
]
class RKLLMResultLastHiddenLayer(ctypes.Structure):
_fields_ = [
("hidden_states", ctypes.POINTER(ctypes.c_float)),
("embd_size", ctypes.c_int),
("num_tokens", ctypes.c_int)
]
class RKLLMResult(ctypes.Structure):
_fields_ = [
("text", ctypes.c_char_p),
("size", ctypes.c_int),
("last_hidden_layer", RKLLMResultLastHiddenLayer)
]
# Create a lock to control multi-user access to the server.
lock = threading.Lock()
# Create a global variable to indicate whether the server is currently in a blocked state.
is_blocking = False
# Define global variables to store the callback function output for displaying in the Gradio interface
global_text = []
global_state = -1
split_byte_data = bytes(b"") # Used to store the segmented byte data
# Define the callback function
def callback_impl(result, userdata, state):
global global_text, global_state, split_byte_data
if state == LLMCallState.RKLLM_RUN_FINISH:
global_state = state
print("\n")
sys.stdout.flush()
elif state == LLMCallState.RKLLM_RUN_ERROR:
global_state = state
print("run error")
sys.stdout.flush()
elif state == LLMCallState.RKLLM_RUN_GET_LAST_HIDDEN_LAYER:
'''
If using the GET_LAST_HIDDEN_LAYER function, the callback interface will return the memory pointer: last_hidden_layer, the number of tokens: num_tokens, and the size of the hidden layer: embd_size.
With these three parameters, you can retrieve the data from last_hidden_layer.
Note: The data needs to be retrieved during the current callback; if not obtained in time, the pointer will be released by the next callback.
'''
if result.last_hidden_layer.embd_size != 0 and result.last_hidden_layer.num_tokens != 0:
data_size = result.last_hidden_layer.embd_size * result.last_hidden_layer.num_tokens * ctypes.sizeof(ctypes.c_float)
print(f"data_size: {data_size}")
global_text.append(f"data_size: {data_size}\n")
output_path = os.getcwd() + "/last_hidden_layer.bin"
with open(output_path, "wb") as outFile:
data = ctypes.cast(result.last_hidden_layer.hidden_states, ctypes.POINTER(ctypes.c_float))
float_array_type = ctypes.c_float * (data_size // ctypes.sizeof(ctypes.c_float))
float_array = float_array_type.from_address(ctypes.addressof(data.contents))
outFile.write(bytearray(float_array))
print(f"Data saved to {output_path} successfully!")
global_text.append(f"Data saved to {output_path} successfully!")
else:
print("Invalid hidden layer data.")
global_text.append("Invalid hidden layer data.")
global_state = state
time.sleep(0.05) # Delay for 0.05 seconds to wait for the output result
sys.stdout.flush()
else:
# Save the output token text and the RKLLM running state
global_state = state
# Monitor if the current byte data is complete; if incomplete, record it for later parsing
try:
global_text.append((split_byte_data + result.contents.text).decode('utf-8'))
print((split_byte_data + result.contents.text).decode('utf-8'), end='')
split_byte_data = bytes(b"")
except:
split_byte_data += result.contents.text
sys.stdout.flush()
# Connect the callback function between the Python side and the C++ side
callback_type = ctypes.CFUNCTYPE(None, ctypes.POINTER(RKLLMResult), ctypes.c_void_p, ctypes.c_int)
callback = callback_type(callback_impl)
# Define the RKLLM class, which includes initialization, inference, and release operations for the RKLLM model in the dynamic library
class RKLLM(object):
def __init__(self, model_path, lora_model_path = None, prompt_cache_path = None):
rkllm_param = RKLLMParam()
rkllm_param.model_path = bytes(model_path, 'utf-8')
rkllm_param.max_context_len = 512
rkllm_param.max_new_tokens = -1
rkllm_param.skip_special_token = True
rkllm_param.top_k = 1
rkllm_param.top_p = 0.9
rkllm_param.temperature = 0.8
rkllm_param.repeat_penalty = 1.1
rkllm_param.frequency_penalty = 0.0
rkllm_param.presence_penalty = 0.0
rkllm_param.mirostat = 0
rkllm_param.mirostat_tau = 5.0
rkllm_param.mirostat_eta = 0.1
rkllm_param.is_async = False
rkllm_param.img_start = "".encode('utf-8')
rkllm_param.img_end = "".encode('utf-8')
rkllm_param.img_content = "".encode('utf-8')
rkllm_param.extend_param.base_domain_id = 0
self.handle = RKLLM_Handle_t()
self.rkllm_init = rkllm_lib.rkllm_init
self.rkllm_init.argtypes = [ctypes.POINTER(RKLLM_Handle_t), ctypes.POINTER(RKLLMParam), callback_type]
self.rkllm_init.restype = ctypes.c_int
self.rkllm_init(ctypes.byref(self.handle), ctypes.byref(rkllm_param), callback)
self.rkllm_run = rkllm_lib.rkllm_run
self.rkllm_run.argtypes = [RKLLM_Handle_t, ctypes.POINTER(RKLLMInput), ctypes.POINTER(RKLLMInferParam), ctypes.c_void_p]
self.rkllm_run.restype = ctypes.c_int
self.rkllm_destroy = rkllm_lib.rkllm_destroy
self.rkllm_destroy.argtypes = [RKLLM_Handle_t]
self.rkllm_destroy.restype = ctypes.c_int
self.lora_adapter_path = None
self.lora_model_name = None
if lora_model_path:
self.lora_adapter_path = lora_model_path
self.lora_adapter_name = "test"
lora_adapter = RKLLMLoraAdapter()
ctypes.memset(ctypes.byref(lora_adapter), 0, ctypes.sizeof(RKLLMLoraAdapter))
lora_adapter.lora_adapter_path = ctypes.c_char_p((self.lora_adapter_path).encode('utf-8'))
lora_adapter.lora_adapter_name = ctypes.c_char_p((self.lora_adapter_name).encode('utf-8'))
lora_adapter.scale = 1.0
rkllm_load_lora = rkllm_lib.rkllm_load_lora
rkllm_load_lora.argtypes = [RKLLM_Handle_t, ctypes.POINTER(RKLLMLoraAdapter)]
rkllm_load_lora.restype = ctypes.c_int
rkllm_load_lora(self.handle, ctypes.byref(lora_adapter))
self.prompt_cache_path = None
if prompt_cache_path:
self.prompt_cache_path = prompt_cache_path
rkllm_load_prompt_cache = rkllm_lib.rkllm_load_prompt_cache
rkllm_load_prompt_cache.argtypes = [RKLLM_Handle_t, ctypes.c_char_p]
rkllm_load_prompt_cache.restype = ctypes.c_int
rkllm_load_prompt_cache(self.handle, ctypes.c_char_p((prompt_cache_path).encode('utf-8')))
def run(self, prompt):
rkllm_lora_params = None
if self.lora_model_name:
rkllm_lora_params = RKLLMLoraParam()
rkllm_lora_params.lora_adapter_name = ctypes.c_char_p((self.lora_model_name).encode('utf-8'))
rkllm_infer_params = RKLLMInferParam()
ctypes.memset(ctypes.byref(rkllm_infer_params), 0, ctypes.sizeof(RKLLMInferParam))
rkllm_infer_params.mode = RKLLMInferMode.RKLLM_INFER_GENERATE
rkllm_infer_params.lora_params = ctypes.byref(rkllm_lora_params) if rkllm_lora_params else None
rkllm_input = RKLLMInput()
rkllm_input.input_mode = RKLLMInputMode.RKLLM_INPUT_PROMPT
rkllm_input.input_data.prompt_input = ctypes.c_char_p((PROMPT_TEXT_PREFIX + prompt + PROMPT_TEXT_POSTFIX).encode('utf-8'))
self.rkllm_run(self.handle, ctypes.byref(rkllm_input), ctypes.byref(rkllm_infer_params), None)
return
def release(self):
self.rkllm_destroy(self.handle)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--rkllm_model_path', type=str, required=True, help='Absolute path of the converted RKLLM model on the Linux board;')
parser.add_argument('--target_platform', type=str, required=True, help='Target platform: e.g., rk3588/rk3576;')
parser.add_argument('--lora_model_path', type=str, help='Absolute path of the lora_model on the Linux board;')
parser.add_argument('--prompt_cache_path', type=str, help='Absolute path of the prompt_cache file on the Linux board;')
args = parser.parse_args()
if not os.path.exists(args.rkllm_model_path):
print("Error: Please provide the correct rkllm model path, and ensure it is the absolute path on the board.")
sys.stdout.flush()
exit()
if not (args.target_platform in ["rk3588", "rk3576"]):
print("Error: Please specify the correct target platform: rk3588/rk3576.")
sys.stdout.flush()
exit()
if args.lora_model_path:
if not os.path.exists(args.lora_model_path):
print("Error: Please provide the correct lora_model path, and advise it is the absolute path on the board.")
sys.stdout.flush()
exit()
if args.prompt_cache_path:
if not os.path.exists(args.prompt_cache_path):
print("Error: Please provide the correct prompt_cache_file path, and advise it is the absolute path on the board.")
sys.stdout.flush()
exit()
# Fix frequency
command = "bash /app/fix_freq_{}.sh".format(args.target_platform)
subprocess.run(command, shell=True)
# Set resource limit
resource.setrlimit(resource.RLIMIT_NOFILE, (102400, 102400))
# Initialize RKLLM model
print("=========init....===========")
sys.stdout.flush()
model_path = args.rkllm_model_path
rkllm_model = RKLLM(model_path, args.lora_model_path, args.prompt_cache_path)
print("RKLLM Model has been initialized successfully!")
print("==============================")
sys.stdout.flush()
# Create a function to receive data sent by the user using a request
@app.route('/rkllm_chat', methods=['POST'])
def receive_message():
# Link global variables to retrieve the output information from the callback function
global global_text, global_state
global is_blocking
# If the server is in a blocking state, return a specific response.
if is_blocking or global_state==0:
return jsonify({'status': 'error', 'message': 'RKLLM_Server is busy! Maybe you can try again later.'}), 503
lock.acquire()
try:
# Set the server to a blocking state.
is_blocking = True
# Get JSON data from the POST request.
data = request.json
if data and 'messages' in data:
# Reset global variables.
global_text = []
global_state = -1
# Define the structure for the returned response.
rkllm_responses = {
"id": "rkllm_chat",
"object": "rkllm_chat",
"created": None,
"choices": [],
"usage": {
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None
}
}
if not "stream" in data.keys() or data["stream"] == False:
# Process the received data here.
messages = data['messages']
print("Received messages:", messages)
for index, message in enumerate(messages):
input_prompt = message['content']
rkllm_output = ""
# Create a thread for model inference.
model_thread = threading.Thread(target=rkllm_model.run, args=(input_prompt,))
model_thread.start()
# Wait for the model to finish running and periodically check the inference thread of the model.
model_thread_finished = False
while not model_thread_finished:
while len(global_text) > 0:
rkllm_output += global_text.pop(0)
time.sleep(0.005)
model_thread.join(timeout=0.005)
model_thread_finished = not model_thread.is_alive()
rkllm_responses["choices"].append(
{"index": index,
"message": {
"role": "assistant",
"content": rkllm_output,
},
"logprobs": None,
"finish_reason": "stop"
}
)
return jsonify(rkllm_responses), 200
else:
messages = data['messages']
print("Received messages:", messages)
for index, message in enumerate(messages):
input_prompt = message['content']
rkllm_output = ""
def generate():
model_thread = threading.Thread(target=rkllm_model.run, args=(input_prompt,))
model_thread.start()
model_thread_finished = False
while True:
while len(global_text) > 0:
rkllm_output = global_text.pop(0)
# Skip empty chunks
if not rkllm_output:
continue
# Construct a single response for this chunk
response_chunk = {
"id": "rkllm_chat",
"object": "rkllm_chat",
"created": None,
"choices": [
{
"index": index,
"delta": {
"role": "assistant",
"content": rkllm_output,
},
"logprobs": None,
"finish_reason": None if global_state == 0 else "stop",
}
],
"usage": {
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None,
},
}
# Yield the current chunk as a JSON string
yield f"{json.dumps(response_chunk)}\n\n"
model_thread.join(timeout=0.005)
model_thread_finished = not model_thread.is_alive()
if model_thread_finished and len(global_text) == 0:
break # Exit only when thread is done AND no more chunks
return Response(generate(), content_type='text/plain')
else:
return jsonify({'status': 'error', 'message': 'Invalid JSON data!'}), 400
finally:
lock.release()
is_blocking = False
# Start the Flask application.
# app.run(host='0.0.0.0', port=8080)
app.run(host='0.0.0.0', port=8083, threaded=True, debug=False)
print("====================")
print("RKLLM model inference completed, releasing RKLLM model resources...")
rkllm_model.release()
print("====================")