-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_recognition.py
67 lines (56 loc) · 1.97 KB
/
image_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from sklearn.datasets import fetch_mldata
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
#1
mnist = fetch_mldata('MNIST original')
mnist
#2
mnist.target.shape #pour avoir le nombre d'instance
mnist.data.shape
#3
sample = np.random.randint(70000, size=5000)
data=mnist.data[sample]
target=mnist.target[sample]
#4
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.33)
#5
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
model_X_train_pred = model.predict(X_test)
print(accuracy_score(y_test, model_X_train_pred))
#6
liste = []
for i in range(2, 15):
model = KNeighborsClassifier(n_neighbors=i)
model.fit(X_train, y_train)
model_X_train_pred = model.predict(X_test)
liste.append(accuracy_score(y_test, model_X_train_pred))
plt.plot(range(2, 15), liste, 'o-')
plt.show()
images = X_test.reshape((-1, 28, 28))
select = np.random.randint(images.shape[0], size=12)
for i, v in enumerate(select):
plt.subplot(3, 4, i+1)
plt.axis('off')
plt.imshow(images[v], cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction:%i'% model_X_train_pred[v])
#7
clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=3)
clf = clf.fit(data, target)
tree.export_graphviz(clf, out_file='essai2.dot')
clf = tree.DecisionTreeClassifier(max_leaf_nodes=5)
clf = clf.fit(data, target)
tree.export_graphviz(clf)
#cross validation
print(cross_val_score(clf, data, target, cv=10))
#matrice de confusion
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.33)
classifieur = tree.DecisionTreeClassifier()
y_pred = classifieur.fit(X_train, y_train).predict(X_test)
cm =confusion_matrix(y_test, y_pred)
print(cm)