-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhurricaneanalysis.py
215 lines (177 loc) · 9.73 KB
/
hurricaneanalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# names of hurricanes
names = ['Cuba I', 'San Felipe II Okeechobee', 'Bahamas', 'Cuba II', 'CubaBrownsville', 'Tampico', 'Labor Day', 'New England', 'Carol', 'Janet', 'Carla', 'Hattie', 'Beulah', 'Camille', 'Edith', 'Anita', 'David', 'Allen', 'Gilbert', 'Hugo', 'Andrew', 'Mitch', 'Isabel', 'Ivan', 'Emily', 'Katrina', 'Rita', 'Wilma', 'Dean', 'Felix', 'Matthew', 'Irma', 'Maria', 'Michael']
# months of hurricanes
months = ['October', 'September', 'September', 'November', 'August', 'September', 'September', 'September', 'September', 'September', 'September', 'October', 'September', 'August', 'September', 'September', 'August', 'August', 'September', 'September', 'August', 'October', 'September', 'September', 'July', 'August', 'September', 'October', 'August', 'September', 'October', 'September', 'September', 'October']
# years of hurricanes
years = [1924, 1928, 1932, 1932, 1933, 1933, 1935, 1938, 1953, 1955, 1961, 1961, 1967, 1969, 1971, 1977, 1979, 1980, 1988, 1989, 1992, 1998, 2003, 2004, 2005, 2005, 2005, 2005, 2007, 2007, 2016, 2017, 2017, 2018]
# maximum sustained winds (mph) of hurricanes
max_sustained_winds = [165, 160, 160, 175, 160, 160, 185, 160, 160, 175, 175, 160, 160, 175, 160, 175, 175, 190, 185, 160, 175, 180, 165, 165, 160, 175, 180, 185, 175, 175, 165, 180, 175, 160]
# areas affected by each hurricane
areas_affected = [['Central America', 'Mexico', 'Cuba', 'Florida', 'The Bahamas'], ['Lesser Antilles', 'The Bahamas', 'United States East Coast', 'Atlantic Canada'], ['The Bahamas', 'Northeastern United States'], ['Lesser Antilles', 'Jamaica', 'Cayman Islands', 'Cuba', 'The Bahamas', 'Bermuda'], ['The Bahamas', 'Cuba', 'Florida', 'Texas', 'Tamaulipas'], ['Jamaica', 'Yucatn Peninsula'], ['The Bahamas', 'Florida', 'Georgia', 'The Carolinas', 'Virginia'], ['Southeastern United States', 'Northeastern United States', 'Southwestern Quebec'], ['Bermuda', 'New England', 'Atlantic Canada'], ['Lesser Antilles', 'Central America'], ['Texas', 'Louisiana', 'Midwestern United States'], ['Central America'], ['The Caribbean', 'Mexico', 'Texas'], ['Cuba', 'United States Gulf Coast'], ['The Caribbean', 'Central America', 'Mexico', 'United States Gulf Coast'], ['Mexico'], ['The Caribbean', 'United States East coast'], ['The Caribbean', 'Yucatn Peninsula', 'Mexico', 'South Texas'], ['Jamaica', 'Venezuela', 'Central America', 'Hispaniola', 'Mexico'], ['The Caribbean', 'United States East Coast'], ['The Bahamas', 'Florida', 'United States Gulf Coast'], ['Central America', 'Yucatn Peninsula', 'South Florida'], ['Greater Antilles', 'Bahamas', 'Eastern United States', 'Ontario'], ['The Caribbean', 'Venezuela', 'United States Gulf Coast'], ['Windward Islands', 'Jamaica', 'Mexico', 'Texas'], ['Bahamas', 'United States Gulf Coast'], ['Cuba', 'United States Gulf Coast'], ['Greater Antilles', 'Central America', 'Florida'], ['The Caribbean', 'Central America'], ['Nicaragua', 'Honduras'], ['Antilles', 'Venezuela', 'Colombia', 'United States East Coast', 'Atlantic Canada'], ['Cape Verde', 'The Caribbean', 'British Virgin Islands', 'U.S. Virgin Islands', 'Cuba', 'Florida'], ['Lesser Antilles', 'Virgin Islands', 'Puerto Rico', 'Dominican Republic', 'Turks and Caicos Islands'], ['Central America', 'United States Gulf Coast (especially Florida Panhandle)']]
# damages (USD($)) of hurricanes
damages = ['Damages not recorded', '100M', 'Damages not recorded', '40M', '27.9M', '5M', 'Damages not recorded', '306M', '2M', '65.8M', '326M', '60.3M', '208M', '1.42B', '25.4M', 'Damages not recorded', '1.54B', '1.24B', '7.1B', '10B', '26.5B', '6.2B', '5.37B', '23.3B', '1.01B', '125B', '12B', '29.4B', '1.76B', '720M', '15.1B', '64.8B', '91.6B', '25.1B']
# deaths for each hurricane
deaths = [90,4000,16,3103,179,184,408,682,5,1023,43,319,688,259,37,11,2068,269,318,107,65,19325,51,124,17,1836,125,87,45,133,603,138,3057,74]
# 1
# Update Recorded Damages
conversion = {"M": 1000000,
"B": 1000000000}
def updated_damages_fn(damages):
updated_damages = []
for damage in damages:
if 'Damages not recorded' in damage:
updated_damages.append(damage)
if 'M' in damage:
updated_damages.append(float(damage.strip('M'))*conversion['M'])
if 'B' in damage:
updated_damages.append(float(damage.strip('B'))*conversion['B'])
return updated_damages
# test function by updating damages
updated_damages = updated_damages_fn(damages)
#print(updated_damages)
# 2
# Create a Table
def dict_fn(names, months, years, max_sustained_winds,updated_damages, areas_affected, deaths):
dict = {}
for i in range(len(names)):
dict[names[i]] = {'Name': names[i], 'Month': months[i], 'Year': years[i], 'Max Sustained Wind': max_sustained_winds[i], 'Areas Affected': areas_affected[i], 'Damage': updated_damages[i], 'Deaths': deaths[i]}
return dict
dict = dict_fn(names, months, years, max_sustained_winds,updated_damages, areas_affected, deaths)
print(dict)
#print(dict_fn(names, months, years, max_sustained_winds,updated_damages, areas_affected, deaths))
# Create and view the hurricanes dictionary
# 3
# Organizing by Year
def year_dict(dict):
hurricane_years = {}
#for loop that checks if year in hurricane_years, and adds data
for data in dict.values():
for year, lst in hurricane_years.items():
if data['Year'] == year:
lst.append(data)
hurricane_years.update({data['Year']: [data]})
return hurricane_years
# create a new dictionary of hurricanes with year and key
year_dict = year_dict(dict)
#print(year_dict)
# 4
# Counting Damaged Areas
# create dictionary of areas to store the number of hurricanes involved in
def areas_affecteddict(dict):
total_areas_affected = []
total_areas_affected_dict = {}
#areas_affected_dict = defaultdict(total_areas_affected)
for hurricanes in dict.values():
for key,values in hurricanes.items():
if key == 'Areas Affected':
total_areas_affected += values
for i in total_areas_affected:
if i not in total_areas_affected_dict:
total_areas_affected_dict[i] = 1
if i in total_areas_affected_dict:
total_areas_affected_dict[i] += 1
return total_areas_affected_dict
dict_areas_affected = areas_affecteddict(dict)
#print(dict_areas_affected)
# 5
# Calculating Maximum Hurricane Count
def max_hurricane_count(dict_areas_affected):
max = 0
max_affected = ''
for key, value in dict_areas_affected.items():
if value > max:
max = value
max_affected = key
return max_affected, max
max_hurricane = max_hurricane_count(dict_areas_affected)
#print(max_hurricane)
# find most frequently affected area and the number of hurricanes involved in
# 6
# Calculating the Deadliest Hurricane
def deadliest_hurricane(dict):
max_value = 0
max = ''
for i in dict.values():
for key, value in i.items():
if key == 'Deaths':
if value > max_value:
max_value = value
max = i['Name']
return max, max_value
deadliest_hurricane = deadliest_hurricane(dict)
#print(deadliest_hurricane)
# find highest mortality hurricane and the number of deaths
mortality_scale = {0: 0,
1: 100,
2: 500,
3: 1000,
4: 10000}
# 7
# Rating Hurricanes by Mortality
def hurricanes_by_mortality(dict):
hurricanes_by_mortalitydict = {0: '',1: '', 2: '', 3: '',4:''}
for i in dict.values():
for key, value in i.items():
if key == 'Deaths':
if value == 0:
hurricanes_by_mortalitydict[0] += ',' + i['Name']
if value > 0 and value >= 100:
hurricanes_by_mortalitydict[1] += ',' + i['Name']
if value > 100 and value >= 500:
hurricanes_by_mortalitydict[2] += ',' + i['Name']
if value > 500 and value >= 1000:
hurricanes_by_mortalitydict[3] += ',' + i['Name']
if value > 1000 and value >= 10000:
hurricanes_by_mortalitydict[4] += ',' + i['Name']
return hurricanes_by_mortalitydict
hurricanes_by_mortalitydict = hurricanes_by_mortality(dict)
#print(hurricanes_by_mortalitydict)
# categorize hurricanes in new dictionary with mortality severity as key
# 8 Calculating Hurricane Maximum Damage
# find highest damage inducing hurricane and its total cost
def max_damage(dict):
max_damage = ''
cost = 0
for i in dict.values():
for key, value in i.items():
if key == "Damage":
if value == "Damages not recorded":
continue
if int(value) > cost:
cost = value
max_damage = i['Name']
return max_damage, cost
max_damages = max_damage(dict)
#print(max_damages)
# 9
# Rating Hurricanes by Damage
damage_scale = {0: 0,
1: 100000000,
2: 1000000000,
3: 10000000000,
4: 50000000000}
# categorize hurricanes in new dictionary with damage severity as key
def damage_scale(dict):
damage_scale_dict = {0: '',
1: '',
2: '',
3: '',
4: ''}
for i in dict.values():
for key, value in i.items():
if key == "Damage":
if value == "Damages not recorded":
continue
if value == 0:
damage_scale_dict[0] += i['Name']
if value > 100000000:
damage_scale_dict[1] += i['Name'] + ', '
if value > 1000000000:
damage_scale_dict[2] += i['Name'] + ', '
if value > 10000000000:
damage_scale_dict[3] += i['Name'] + ', '
if value > 5000000000:
damage_scale_dict[4] += i['Name'] + ', '
return damage_scale_dict
damage_scale = damage_scale(dict)
print(damage_scale)