|
19 | 19 | parser.add_argument('--valroot', required=True, help='path to dataset')
|
20 | 20 | parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
|
21 | 21 | parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
|
22 |
| -parser.add_argument('--imgH', type=int, default=32, help='the height / width of the input image to network') |
| 22 | +parser.add_argument('--imgH', type=int, default=32, help='the height of the input image to network') |
| 23 | +parser.add_argument('--imgW', type=int, default=100, help='the width of the input image to network') |
23 | 24 | parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state')
|
24 | 25 | parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
|
25 | 26 | parser.add_argument('--lr', type=float, default=0.01, help='learning rate for Critic, default=0.00005')
|
|
65 | 66 | train_dataset, batch_size=opt.batchSize,
|
66 | 67 | shuffle=True, sampler=sampler,
|
67 | 68 | num_workers=int(opt.workers),
|
68 |
| - collate_fn=dataset.alignCollate(imgH=opt.imgH, keep_ratio=opt.keep_ratio)) |
| 69 | + collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio)) |
69 | 70 | test_dataset = dataset.lmdbDataset(
|
70 | 71 | root=opt.valroot, transform=dataset.resizeNormalize((100, 32)))
|
71 | 72 |
|
|
0 commit comments