Skip to content

Commit 923a6a2

Browse files
committed
big update: rework all notebooks
1 parent ca3318f commit 923a6a2

29 files changed

+4428
-10118
lines changed

.gitignore

+6-1
Original file line numberDiff line numberDiff line change
@@ -56,4 +56,9 @@ docs/_build/
5656
# PyBuilder
5757
target/
5858

59-
.ipynb_checkpoints
59+
# IPython
60+
.ipynb_checkpoints
61+
notebooks/.ipynb_checkpoints
62+
63+
# Emacs
64+
*~

README.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -18,13 +18,14 @@ This tutorial requires the following packages:
1818
- `matplotlib` version 1.3 or later: http://matplotlib.org/
1919
- `scikit-learn` version 0.14 or later: http://scikit-learn.org
2020
- `ipython` version 2.0 or later, with notebook support: http://ipython.org
21+
- `seaborn` version 0.5 or later
2122

2223
The easiest way to get these is to use the [conda](https://store.continuum.io/) environment manager.
2324
I suggest downloading and installing [miniconda](conda.pydata.org/miniconda.html).
2425

2526
Once this is installed, the following command will install all required packages in your Python environment:
2627
```
27-
$ conda install numpy scipy matplotlib scikit-learn ipython-notebook
28+
$ conda install numpy scipy matplotlib scikit-learn ipython-notebook seaborn
2829
```
2930

3031
Alternatively, you can download and install the (very large) Anaconda software distribution, found at https://store.continuum.io/.

notebooks/.ipynb_checkpoints/01_basics-checkpoint.ipynb

-730
This file was deleted.

notebooks/.ipynb_checkpoints/02_data_representation-checkpoint.ipynb

-891
This file was deleted.

notebooks/.ipynb_checkpoints/03_basic_principles-checkpoint.ipynb

-786
This file was deleted.

notebooks/.ipynb_checkpoints/04_supervised_in_depth-checkpoint.ipynb

-616
This file was deleted.

notebooks/.ipynb_checkpoints/05_unsupervised_in_depth-checkpoint.ipynb

-743
This file was deleted.

notebooks/.ipynb_checkpoints/06_validation-checkpoint.ipynb

-1,163
This file was deleted.

notebooks/00_Preliminaries.ipynb

-203
This file was deleted.

notebooks/.ipynb_checkpoints/00_Preliminaries-checkpoint.ipynb notebooks/01-Preliminaries.ipynb

+21-40
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
{
22
"metadata": {
33
"name": "",
4-
"signature": "sha256:de241aaf4c4e358ccdf08ae1d006c41163b68f28cbe4c590a72cc90148201d1c"
4+
"signature": "sha256:152718c240149636149bc1ec5b47f9a1b11033c64ec3350769144260c578a94a"
55
},
66
"nbformat": 3,
77
"nbformat_minor": 0,
@@ -53,12 +53,11 @@
5353
"source": [
5454
"Outline:\n",
5555
"\n",
56-
"**9:00 - 9:30** Preliminaries: Setup & introduction\n",
56+
"**9:00 - 9:15** Preliminaries: Setup & introduction\n",
5757
"* Making sure your computer is set-up\n",
58-
"* What is Machine Learning?\n",
59-
"* Quick review of Numpy and Matplotlib\n",
6058
"\n",
61-
"**9:30 - 10:15** Basic Principles of Machine Learning and the Scikit-learn Interface\n",
59+
"**9:15 - 10:00** Basic Principles of Machine Learning and the Scikit-learn Interface\n",
60+
"* What is Machine Learning?\n",
6261
"* Machine learning data layout\n",
6362
"* Supervised Learning\n",
6463
" - Classification\n",
@@ -67,15 +66,20 @@
6766
"* Unsupervised Learning\n",
6867
" - Clustering\n",
6968
" - Dimensionality Reduction\n",
70-
"* Evaluation of models\n",
71-
"* How to choose the right algorithm for your dataset\n",
69+
" - Density Estimation\n",
70+
"* Evaluation of Learning Models\n",
71+
"* Choosing the right algorithm for your dataset\n",
72+
"\n",
73+
"**10:00 - 10:45** Supervised learning in-depth\n",
74+
"* Support Vector Machines\n",
75+
"* Decision Trees and Random Forests\n",
7276
"\n",
73-
"**10:15 - 11:00** Supervised learning in-depth\n",
74-
"* Two important algorithms: Support Vector Machines and Random Forests\n",
75-
"* Application: recognizing handwritten digits\n",
77+
"**10:45 - 11:00**: break\n",
7678
"\n",
7779
"**11:00 - 11:45** Unsupervised learning in-depth\n",
78-
"* Two important algorithms: PCA and K Means\n",
80+
"* Dimensionality Reduction: Principal Component Analysis\n",
81+
"* Clustering: K Means\n",
82+
"* Density Estimation: Gaussian Mixture Models\n",
7983
"* Application: image color compression\n",
8084
"\n",
8185
"**11:45 - 12:20** Validation and Model Selection\n",
@@ -104,6 +108,7 @@
104108
"- `matplotlib` version 1.3 or later: http://matplotlib.org/\n",
105109
"- `scikit-learn` version 0.14 or later: http://scikit-learn.org\n",
106110
"- `ipython` version 2.0 or later, with notebook support: http://ipython.org\n",
111+
"- `seaborn`: version 0.5 or later, used mainly for plot styling\n",
107112
"\n",
108113
"The easiest way to get these is to use the [conda](https://store.continuum.io/) environment manager.\n",
109114
"I suggest downloading and installing [miniconda](conda.pydata.org/miniconda.html).\n",
@@ -146,38 +151,14 @@
146151
"print('matplotlib:', matplotlib.__version__)\n",
147152
"\n",
148153
"import sklearn\n",
149-
"print('scikit-learn:', sklearn.__version__)"
154+
"print('scikit-learn:', sklearn.__version__)\n",
155+
"\n",
156+
"import seaborn\n",
157+
"print('seaborn', seaborn.__version__)"
150158
],
151159
"language": "python",
152160
"metadata": {},
153-
"outputs": [
154-
{
155-
"output_type": "stream",
156-
"stream": "stdout",
157-
"text": [
158-
"IPython: 2.4.1\n",
159-
"numpy:"
160-
]
161-
},
162-
{
163-
"output_type": "stream",
164-
"stream": "stdout",
165-
"text": [
166-
" 1.9.2\n",
167-
"scipy: 0.15.1\n",
168-
"matplotlib: 1.4.3\n",
169-
"scikit-learn:"
170-
]
171-
},
172-
{
173-
"output_type": "stream",
174-
"stream": "stdout",
175-
"text": [
176-
" 0.15.2\n"
177-
]
178-
}
179-
],
180-
"prompt_number": 1
161+
"outputs": []
181162
},
182163
{
183164
"cell_type": "heading",

0 commit comments

Comments
 (0)