|
1 | 1 | {
|
2 | 2 | "metadata": {
|
3 | 3 | "name": "",
|
4 |
| - "signature": "sha256:de241aaf4c4e358ccdf08ae1d006c41163b68f28cbe4c590a72cc90148201d1c" |
| 4 | + "signature": "sha256:152718c240149636149bc1ec5b47f9a1b11033c64ec3350769144260c578a94a" |
5 | 5 | },
|
6 | 6 | "nbformat": 3,
|
7 | 7 | "nbformat_minor": 0,
|
|
53 | 53 | "source": [
|
54 | 54 | "Outline:\n",
|
55 | 55 | "\n",
|
56 |
| - "**9:00 - 9:30** Preliminaries: Setup & introduction\n", |
| 56 | + "**9:00 - 9:15** Preliminaries: Setup & introduction\n", |
57 | 57 | "* Making sure your computer is set-up\n",
|
58 |
| - "* What is Machine Learning?\n", |
59 |
| - "* Quick review of Numpy and Matplotlib\n", |
60 | 58 | "\n",
|
61 |
| - "**9:30 - 10:15** Basic Principles of Machine Learning and the Scikit-learn Interface\n", |
| 59 | + "**9:15 - 10:00** Basic Principles of Machine Learning and the Scikit-learn Interface\n", |
| 60 | + "* What is Machine Learning?\n", |
62 | 61 | "* Machine learning data layout\n",
|
63 | 62 | "* Supervised Learning\n",
|
64 | 63 | " - Classification\n",
|
|
67 | 66 | "* Unsupervised Learning\n",
|
68 | 67 | " - Clustering\n",
|
69 | 68 | " - Dimensionality Reduction\n",
|
70 |
| - "* Evaluation of models\n", |
71 |
| - "* How to choose the right algorithm for your dataset\n", |
| 69 | + " - Density Estimation\n", |
| 70 | + "* Evaluation of Learning Models\n", |
| 71 | + "* Choosing the right algorithm for your dataset\n", |
| 72 | + "\n", |
| 73 | + "**10:00 - 10:45** Supervised learning in-depth\n", |
| 74 | + "* Support Vector Machines\n", |
| 75 | + "* Decision Trees and Random Forests\n", |
72 | 76 | "\n",
|
73 |
| - "**10:15 - 11:00** Supervised learning in-depth\n", |
74 |
| - "* Two important algorithms: Support Vector Machines and Random Forests\n", |
75 |
| - "* Application: recognizing handwritten digits\n", |
| 77 | + "**10:45 - 11:00**: break\n", |
76 | 78 | "\n",
|
77 | 79 | "**11:00 - 11:45** Unsupervised learning in-depth\n",
|
78 |
| - "* Two important algorithms: PCA and K Means\n", |
| 80 | + "* Dimensionality Reduction: Principal Component Analysis\n", |
| 81 | + "* Clustering: K Means\n", |
| 82 | + "* Density Estimation: Gaussian Mixture Models\n", |
79 | 83 | "* Application: image color compression\n",
|
80 | 84 | "\n",
|
81 | 85 | "**11:45 - 12:20** Validation and Model Selection\n",
|
|
104 | 108 | "- `matplotlib` version 1.3 or later: http://matplotlib.org/\n",
|
105 | 109 | "- `scikit-learn` version 0.14 or later: http://scikit-learn.org\n",
|
106 | 110 | "- `ipython` version 2.0 or later, with notebook support: http://ipython.org\n",
|
| 111 | + "- `seaborn`: version 0.5 or later, used mainly for plot styling\n", |
107 | 112 | "\n",
|
108 | 113 | "The easiest way to get these is to use the [conda](https://store.continuum.io/) environment manager.\n",
|
109 | 114 | "I suggest downloading and installing [miniconda](conda.pydata.org/miniconda.html).\n",
|
|
146 | 151 | "print('matplotlib:', matplotlib.__version__)\n",
|
147 | 152 | "\n",
|
148 | 153 | "import sklearn\n",
|
149 |
| - "print('scikit-learn:', sklearn.__version__)" |
| 154 | + "print('scikit-learn:', sklearn.__version__)\n", |
| 155 | + "\n", |
| 156 | + "import seaborn\n", |
| 157 | + "print('seaborn', seaborn.__version__)" |
150 | 158 | ],
|
151 | 159 | "language": "python",
|
152 | 160 | "metadata": {},
|
153 |
| - "outputs": [ |
154 |
| - { |
155 |
| - "output_type": "stream", |
156 |
| - "stream": "stdout", |
157 |
| - "text": [ |
158 |
| - "IPython: 2.4.1\n", |
159 |
| - "numpy:" |
160 |
| - ] |
161 |
| - }, |
162 |
| - { |
163 |
| - "output_type": "stream", |
164 |
| - "stream": "stdout", |
165 |
| - "text": [ |
166 |
| - " 1.9.2\n", |
167 |
| - "scipy: 0.15.1\n", |
168 |
| - "matplotlib: 1.4.3\n", |
169 |
| - "scikit-learn:" |
170 |
| - ] |
171 |
| - }, |
172 |
| - { |
173 |
| - "output_type": "stream", |
174 |
| - "stream": "stdout", |
175 |
| - "text": [ |
176 |
| - " 0.15.2\n" |
177 |
| - ] |
178 |
| - } |
179 |
| - ], |
180 |
| - "prompt_number": 1 |
| 161 | + "outputs": [] |
181 | 162 | },
|
182 | 163 | {
|
183 | 164 | "cell_type": "heading",
|
|
0 commit comments