forked from xingdi-eric-yuan/GATA-public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaction_prediction_dataset.py
136 lines (110 loc) · 4.99 KB
/
action_prediction_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import json
from os.path import join as pjoin
from tqdm import tqdm
import numpy as np
import gym
from graph_dataset import GraphDataset
class APData(gym.Env):
FILENAMES_MAP = {
"full": {
"train": "train.full.json",
"valid": "valid.full.json",
"test": "test.full.json"
},
"seen": {
"train": "train.seen.json",
"valid": "valid.seen.json",
"test": "test.seen.json"
}
}
def __init__(self, config):
self.rng = None
self.config = config
self.read_config()
self.seed(self.random_seed)
# Load dataset splits.
self.dataset = {}
for split in ["train", "valid", "test"]:
self.dataset[split] = {
"current_graph": [],
"previous_graph": [],
"target_action": [],
"action_choices": []
}
self.load_dataset_for_ap(split)
print("loaded dataset from {} ...".format(self.data_path))
self.train_size = len(self.dataset["train"]["current_graph"])
self.valid_size = len(self.dataset["valid"]["current_graph"])
self.test_size = len(self.dataset["test"]["current_graph"])
self.batch_pointer = None
self.data_size, self.batch_size, self.data = None, None, None
self.split = "train"
def load_dataset_for_ap(self, split):
file_path = pjoin(self.data_path, self.FILENAMES_MAP[self.graph_type][split])
with open(file_path) as f:
data = json.load(f)
graph_dataset = GraphDataset.loads(data["graph_index"])
self.dataset[split]["graph_dataset"] = graph_dataset
desc = "Loading {}".format(os.path.basename(file_path))
for example in tqdm(data["examples"], desc=desc):
target_action = example["target_action"]
curr_graph = example["current_graph"]
prev_graph = example["previous_graph"]
candidates = example["action_choices"]
self.dataset[split]["current_graph"].append(curr_graph)
self.dataset[split]["previous_graph"].append(prev_graph)
self.dataset[split]["target_action"].append(target_action)
self.dataset[split]["action_choices"].append(candidates)
def read_config(self):
self.data_path = self.config["ap"]["data_path"]
self.graph_type = self.config["ap"]["graph_type"]
self.random_seed = self.config["general"]["random_seed"]
self.use_this_many_data = self.config["general"]["use_this_many_data"]
self.training_batch_size = self.config["general"]["training"]["batch_size"]
self.evaluate_batch_size = self.config["general"]["evaluate"]["batch_size"]
def split_reset(self, split):
if split == "train":
self.data_size = self.train_size
self.batch_size = self.training_batch_size
elif split == "valid":
self.data_size = self.valid_size
self.batch_size = self.evaluate_batch_size
else:
self.data_size = self.test_size
self.batch_size = self.evaluate_batch_size
if split == "train" and self.use_this_many_data > 0:
self.data = {"current_graph": self.dataset[split]["current_graph"][: self.use_this_many_data],
"previous_graph": self.dataset[split]["previous_graph"][: self.use_this_many_data],
"target_action": self.dataset[split]["target_action"][: self.use_this_many_data],
"action_choices": self.dataset[split]["action_choices"][: self.use_this_many_data]}
self.data_size = self.use_this_many_data
else:
self.data = self.dataset[split]
self.split = split
self.batch_pointer = 0
def get_batch(self):
if self.split == "train":
indices = self.rng.choice(self.data_size, self.training_batch_size)
else:
start = self.batch_pointer
end = min(start + self.training_batch_size, self.data_size)
indices = np.arange(start, end)
self.batch_pointer += self.training_batch_size
if self.batch_pointer >= self.data_size:
self.batch_pointer = 0
current_graph, previous_graph, target_action, action_choices = [], [], [], []
decompress = self.dataset[self.split]["graph_dataset"].decompress
for idx in indices:
target_action.append(self.data["target_action"][idx])
action_choices.append(self.data["action_choices"][idx])
# Perform just-in-time decompression.
current_graph.append(decompress(self.data["current_graph"][idx]))
previous_graph.append(decompress(self.data["previous_graph"][idx]))
return current_graph, previous_graph, target_action, action_choices
def render(self, mode='human'):
return
def close(self):
return
def seed(self, seed):
self.rng = np.random.RandomState(seed)