-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTraining_code.py
105 lines (93 loc) · 2.94 KB
/
Training_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#import libraries
import cv2
import cPickle
import numpy as np
#opening files for writing and video capture
cap = cv2.VideoCapture(0)
'''
Trainer File
'''
tfile = open("trainer_ideal_front2.txt","a")
histo = open("histogram_ideal.txt","a")
count = 1
#Finding all the contours
while True:
top_left = (0,0)
bottom_right = (0,0)
ret,im = cap.read()
img = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
(thresh,imgg)=cv2.threshold(img,10,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
ret,thresh = cv2.threshold(imgg,214,255,0)
contours,hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
tmp = cPickle.dumps(contours)
contours = cPickle.loads(tmp)
#Finding the largest contour
areas=[]
areatmp=[]
for c in contours:
area = cv2.contourArea(c, False)
areas.append(area)
areatmp.append(area)
areas.sort()
areas.reverse()
try:
ind = areatmp.index(areas[1])
ctrs = contours[ind]
except IndexError:
pass
#Drawing the bounding box
img1=np.zeros((480,640,1),np.uint8)
cv2.drawContours(img1,ctrs,-1,(255,255,255),3)
flat = ctrs.flatten()
ptsx=[]
ptsy=[]
for i in range(0,len(flat),2):
ptsx.append(flat[i])
ptsy.append(flat[i+1])
top_left = (min(ptsx),min(ptsy)) #Bounding box coordinates
bottom_right = (max(ptsx),max(ptsy)) #Bounding box coordinates
#Training with Histograms for the bounded box
mask=np.zeros((bottom_right[1]-top_left[1]+1,bottom_right[0]-top_left[0]+1,1),np.uint8)
for i in range(top_left[1],bottom_right[1]+1):
for j in range(top_left[0],bottom_right[0]+1):
mask[i-top_left[1]][j-top_left[0]] = img[i][j]
vals=mask.mean(axis=2).flatten()
counts,bins=np.histogram(vals,range(257))
#plotting histogram bins with bucket size 8
sumh=counts[0]
g=0
arr=[]
for i in range(1,256):
if i%8!=0:
sumh+=counts[i]
counts[i]=0
else:
t=counts[i]
counts[i]=sumh
arr.append(sumh)
sumh=t
#Training with Moments for bounded box
mat = np.zeros((bottom_right[1]-top_left[1]+1,bottom_right[0]-top_left[0]+1,1),np.uint8)
cv2.rectangle(img1,top_left,bottom_right,(127,127,127))
cv2.rectangle(im,top_left,bottom_right,(127,127,127))
for i in range(top_left[1],bottom_right[1]+1):
for j in range(top_left[0],bottom_right[0]+1):
mat[i-top_left[1]][j-top_left[0]] = img[i][j]
cv2.imshow("BIN",img1)
cv2.imshow("EXE",im)
cv2.imshow("PICK",mat)
if cv2.waitKey(10) == 99:
for i in arr:
histo.write(str(i)+" ")
moms=[]
moms = cv2.HuMoments(cv2.moments(mat)).flatten()
for i in moms:
tfile.write(str(i)+" ")
print "RECORDED"+str(count)
count+=1
continue
if cv2.waitKey(10)==27:
cv2.destroyAllWindows()
break
tfile.close()
histo.close()