forked from PaulStoffregen/Wire
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWireIMXRT.h
337 lines (328 loc) · 10.3 KB
/
WireIMXRT.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/* Wire Library for Teensy LC & 3.X
* Copyright (c) 2014-2017, Paul Stoffregen, [email protected]
*
* Development of this I2C library was funded by PJRC.COM, LLC by sales of
* Teensy and related products. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef TwoWireIMXRT_h
#define TwoWireIMXRT_h
#if defined(__IMXRT1052__) || defined(__IMXRT1062__)
#include <Arduino.h>
#include <stdint.h>
#define BUFFER_LENGTH 136
//#define WIRE_HAS_END 1
#define WIRE_IMPLEMENT_WIRE
#define WIRE_IMPLEMENT_WIRE1
#define WIRE_IMPLEMENT_WIRE2
class TwoWire : public Stream
{
public:
// Hardware description struct
static const uint8_t cnt_sda_pins = 2;
static const uint8_t cnt_scl_pins = 2;
typedef struct {
const uint8_t pin; // The pin number
const uint32_t mux_val; // Value to set for mux;
volatile uint32_t *select_input_register; // Which register controls the selection
const uint32_t select_val; // Value for that selection
} pin_info_t;
typedef struct {
volatile uint32_t &clock_gate_register;
uint32_t clock_gate_mask;
pin_info_t sda_pins[cnt_sda_pins];
pin_info_t scl_pins[cnt_scl_pins];
IRQ_NUMBER_t irq_number;
void (*irq_function)(void);
} I2C_Hardware_t;
static const I2C_Hardware_t i2c1_hardware;
static const I2C_Hardware_t i2c2_hardware;
static const I2C_Hardware_t i2c3_hardware;
static const I2C_Hardware_t i2c4_hardware;
public:
constexpr TwoWire(const uintptr_t _portAddr, const I2C_Hardware_t &myhardware)
: portAddr(_portAddr), hardware(myhardware) {
}
friend uintptr_t Teensyduino_Test_constinit_Wire(int instance, int index);
void begin();
void begin(uint8_t address);
void begin(int address) {
begin((uint8_t)address);
}
void end();
void setClock(uint32_t frequency);
void setSDA(uint8_t pin);
void setSCL(uint8_t pin);
void beginTransmission(uint8_t address) {
txBuffer[0] = (address << 1);
transmitting = 1;
txBufferLength = 1;
}
void beginTransmission(int address) {
beginTransmission((uint8_t)address);
}
uint8_t endTransmission(uint8_t sendStop);
uint8_t endTransmission(void) {
return endTransmission(1);
}
uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop);
uint8_t requestFrom(uint8_t address, uint8_t quantity, bool sendStop) {
return requestFrom(address, quantity, (uint8_t)(sendStop ? 1 : 0));
}
uint8_t requestFrom(uint8_t address, uint8_t quantity) {
return requestFrom(address, quantity, (uint8_t)1);
}
uint8_t requestFrom(int address, int quantity, int sendStop) {
return requestFrom((uint8_t)address, (uint8_t)quantity,
(uint8_t)(sendStop ? 1 : 0));
}
uint8_t requestFrom(int address, int quantity) {
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)1);
}
uint8_t requestFrom(uint8_t addr, uint8_t qty, uint32_t iaddr, uint8_t n, uint8_t stop);
virtual size_t write(uint8_t data);
virtual size_t write(const uint8_t *data, size_t quantity);
virtual int available(void) {
return rxBufferLength - rxBufferIndex;
}
virtual int read(void) {
if (rxBufferIndex >= rxBufferLength) return -1;
return rxBuffer[rxBufferIndex++];
}
virtual int peek(void) {
if (rxBufferIndex >= rxBufferLength) return -1;
return rxBuffer[rxBufferIndex];
}
virtual void flush(void) {
}
void onReceive(void (*function)(int numBytes)) {
user_onReceive = function;
}
void onRequest(void (*function)(void)) {
user_onRequest = function;
}
// send() for compatibility with very old sketches and libraries
void send(uint8_t b) {
write(b);
}
void send(uint8_t *s, uint8_t n) {
write(s, n);
}
void send(int n) {
write((uint8_t)n);
}
void send(char *s) {
write(s);
}
uint8_t receive(void) {
int c = read();
if (c < 0) return 0;
return c;
}
size_t write(unsigned long n) {
return write((uint8_t)n);
}
size_t write(long n) {
return write((uint8_t)n);
}
size_t write(unsigned int n) {
return write((uint8_t)n);
}
size_t write(int n) {
return write((uint8_t)n);
}
using Print::write;
private:
void isr(void);
//bool wait_idle(void);
void configSDApin(uint8_t index);
void configSCLpin(uint8_t index);
bool wait_idle();
bool force_clock();
const uintptr_t portAddr;
const I2C_Hardware_t &hardware;
uint8_t sda_pin_index_ = 0x0; // default is always first item
uint8_t scl_pin_index_ = 0x0;
uint8_t rxBuffer[BUFFER_LENGTH] = {};
uint8_t rxBufferIndex = 0;
uint8_t rxBufferLength = 0;
uint8_t txAddress = 0;
uint8_t txBuffer[BUFFER_LENGTH+1] = {};
uint8_t txBufferIndex = 0;
uint8_t txBufferLength = 0;
uint8_t transmitting = 0;
uint8_t slave_mode = 0;
uint8_t irqcount = 0;
uint8_t sda_pin_index = 0;
uint8_t scl_pin_index = 0;
void onRequestService(void);
void onReceiveService(uint8_t*, int);
void (*user_onRequest)(void) = nullptr;
void (*user_onReceive)(int) = nullptr;
void sda_rising_isr(void);
friend void lpi2c1_isr(void);
friend void lpi2c2_isr(void);
friend void lpi2c3_isr(void);
friend void lpi2c4_isr(void);
friend void sda_rising_isr0(void);
friend void sda_rising_isr1(void);
};
extern TwoWire Wire;
extern TwoWire Wire1;
extern TwoWire Wire2;
#if defined(ARDUINO_TEENSY_MICROMOD)
extern TwoWire Wire3;
#endif
class TWBRemulation
{
public:
inline TWBRemulation & operator = (int val __attribute__((unused))) __attribute__((always_inline)) {
/*if (val == 12 || val == ((F_CPU / 400000) - 16) / 2) { // 22, 52, 112
I2C0_C1 = 0;
#if F_BUS == 128000000
I2C0_F = I2C_F_DIV320; // 400 kHz
#elif F_BUS == 120000000
I2C0_F = I2C_F_DIV288; // 416 kHz
#elif F_BUS == 108000000
I2C0_F = I2C_F_DIV256; // 422 kHz
#elif F_BUS == 96000000
I2C0_F = I2C_F_DIV240; // 400 kHz
#elif F_BUS == 90000000
I2C0_F = I2C_F_DIV224; // 402 kHz
#elif F_BUS == 80000000
I2C0_F = I2C_F_DIV192; // 416 kHz
#elif F_BUS == 72000000
I2C0_F = I2C_F_DIV192; // 375 kHz
#elif F_BUS == 64000000
I2C0_F = I2C_F_DIV160; // 400 kHz
#elif F_BUS == 60000000
I2C0_F = I2C_F_DIV144; // 416 kHz
#elif F_BUS == 56000000
I2C0_F = I2C_F_DIV144; // 389 kHz
#elif F_BUS == 54000000
I2C0_F = I2C_F_DIV128; // 422 kHz
#elif F_BUS == 48000000
I2C0_F = I2C_F_DIV112; // 400 kHz
#elif F_BUS == 40000000
I2C0_F = I2C_F_DIV96; // 416 kHz
#elif F_BUS == 36000000
I2C0_F = I2C_F_DIV96; // 375 kHz
#elif F_BUS == 24000000
I2C0_F = I2C_F_DIV64; // 375 kHz
#elif F_BUS == 16000000
I2C0_F = I2C_F_DIV40; // 400 kHz
#elif F_BUS == 8000000
I2C0_F = I2C_F_DIV20; // 400 kHz
#elif F_BUS == 4000000
I2C0_F = I2C_F_DIV20; // 200 kHz
#elif F_BUS == 2000000
I2C0_F = I2C_F_DIV20; // 100 kHz
#endif
I2C0_C1 = I2C_C1_IICEN;
} else if (val == 72 || val == ((F_CPU / 100000) - 16) / 2) { // 112, 232, 472
I2C0_C1 = 0;
#if F_BUS == 128000000
I2C0_F = I2C_F_DIV1280; // 100 kHz
#elif F_BUS == 120000000
I2C0_F = I2C_F_DIV1152; // 104 kHz
#elif F_BUS == 108000000
I2C0_F = I2C_F_DIV1024; // 105 kHz
#elif F_BUS == 96000000
I2C0_F = I2C_F_DIV960; // 100 kHz
#elif F_BUS == 90000000
I2C0_F = I2C_F_DIV896; // 100 kHz
#elif F_BUS == 80000000
I2C0_F = I2C_F_DIV768; // 104 kHz
#elif F_BUS == 72000000
I2C0_F = I2C_F_DIV640; // 112 kHz
#elif F_BUS == 64000000
I2C0_F = I2C_F_DIV640; // 100 kHz
#elif F_BUS == 60000000
I2C0_F = I2C_F_DIV576; // 104 kHz
#elif F_BUS == 56000000
I2C0_F = I2C_F_DIV512; // 109 kHz
#elif F_BUS == 54000000
I2C0_F = I2C_F_DIV512; // 105 kHz
#elif F_BUS == 48000000
I2C0_F = I2C_F_DIV480; // 100 kHz
#elif F_BUS == 40000000
I2C0_F = I2C_F_DIV384; // 104 kHz
#elif F_BUS == 36000000
I2C0_F = I2C_F_DIV320; // 113 kHz
#elif F_BUS == 24000000
I2C0_F = I2C_F_DIV240; // 100 kHz
#elif F_BUS == 16000000
I2C0_F = I2C_F_DIV160; // 100 kHz
#elif F_BUS == 8000000
I2C0_F = I2C_F_DIV80; // 100 kHz
#elif F_BUS == 4000000
I2C0_F = I2C_F_DIV40; // 100 kHz
#elif F_BUS == 2000000
I2C0_F = I2C_F_DIV20; // 100 kHz
#endif
I2C0_C1 = I2C_C1_IICEN;
} */
return *this;
}
inline operator int () const __attribute__((always_inline)) {
/* #if F_BUS == 128000000
if (I2C0_F == I2C_F_DIV320) return 12;
#elif F_BUS == 120000000
if (I2C0_F == I2C_F_DIV288) return 12;
#elif F_BUS == 108000000
if (I2C0_F == I2C_F_DIV256) return 12;
#elif F_BUS == 96000000
if (I2C0_F == I2C_F_DIV240) return 12;
#elif F_BUS == 90000000
if (I2C0_F == I2C_F_DIV224) return 12;
#elif F_BUS == 80000000
if (I2C0_F == I2C_F_DIV192) return 12;
#elif F_BUS == 72000000
if (I2C0_F == I2C_F_DIV192) return 12;
#elif F_BUS == 64000000
if (I2C0_F == I2C_F_DIV160) return 12;
#elif F_BUS == 60000000
if (I2C0_F == I2C_F_DIV144) return 12;
#elif F_BUS == 56000000
if (I2C0_F == I2C_F_DIV144) return 12;
#elif F_BUS == 54000000
if (I2C0_F == I2C_F_DIV128) return 12;
#elif F_BUS == 48000000
if (I2C0_F == I2C_F_DIV112) return 12;
#elif F_BUS == 40000000
if (I2C0_F == I2C_F_DIV96) return 12;
#elif F_BUS == 36000000
if (I2C0_F == I2C_F_DIV96) return 12;
#elif F_BUS == 24000000
if (I2C0_F == I2C_F_DIV64) return 12;
#elif F_BUS == 16000000
if (I2C0_F == I2C_F_DIV40) return 12;
#elif F_BUS == 8000000
if (I2C0_F == I2C_F_DIV20) return 12;
#elif F_BUS == 4000000
if (I2C0_F == I2C_F_DIV20) return 12;
#endif */
return 72;
}
};
extern TWBRemulation TWBR;
#endif
#endif