|
1 | 1 | ```{r 04-ex-e0, include=TRUE, message=FALSE}
|
2 | 2 | library(sf)
|
3 | 3 | library(dplyr)
|
4 |
| -data(nz, package = "spData") |
5 |
| -data(nz_height, package = "spData") |
| 4 | +library(spData) |
6 | 5 | ```
|
7 | 6 |
|
8 | 7 | E1. It was established in Section \@ref(spatial-vec) that Canterbury was the region of New Zealand containing most of the 100 highest points in the country.
|
@@ -67,6 +66,27 @@ nz_height_combined %>%
|
67 | 66 | na.omit()
|
68 | 67 | ```
|
69 | 68 |
|
| 69 | +E4. To test your knowledge of spatial predicates: |
| 70 | + |
| 71 | +- Create an object representing Colorado state in the USA, e.g. with the command |
| 72 | +`colorado = us_states[us_states$NAME == "Colorado",]` (base R) or |
| 73 | +`colorado = us_states %>% filter(NAME == "Colorado")` (tidyverse). |
| 74 | +- Create a new object representing all the objects that intersect, in some way, with Colorado and plot the result. |
| 75 | +- Create another object representing all the objects that touch Colorado and plot the result. |
| 76 | + |
| 77 | +```{r 04-ex-4} |
| 78 | +plot(us_states$geometry) |
| 79 | +plot(Colorado$geometry, col = 2, add = TRUE) |
| 80 | +colorado = us_states[us_states$NAME == "Colorado", ] |
| 81 | +intersects_with_colorado = us_states[colorado, , op = st_intersects] |
| 82 | +touches_colorado = us_states[colorado, , op = st_touches] |
| 83 | +plot(us_states$geometry) |
| 84 | +plot(touches_colorado$geometry, col = "grey", add = TRUE) |
| 85 | +``` |
| 86 | + |
| 87 | + |
| 88 | +# What are the neighbouring states of Colorado? |
| 89 | + |
70 | 90 | E4. Use `dem = rast(system.file("raster/dem.tif", package = "spDataLarge"))`, and reclassify the elevation in three classes: low (<300), medium and high (>500).
|
71 | 91 | Secondly, read the NDVI raster (`ndvi = rast(system.file("raster/ndvi.tif", package = "spDataLarge"))`) and compute the mean NDVI and the mean elevation for each altitudinal class.
|
72 | 92 |
|
|
0 commit comments