-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_approx_ver2_par.cpp
221 lines (187 loc) · 7.17 KB
/
main_approx_ver2_par.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <iostream>
#include <fstream>
#include <ctime>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <random>
#include <unordered_map>
#include <unordered_set>
#include <chrono>
#include "read_data.cpp"
#include "motif_id.cpp"
#include <omp.h>
#include <atomic>
//#include <tbb/concurrent_unordered_map.h>
using namespace std;
struct hyperwedge{
int a, b, C_ab;
};
inline long long convert_id(int hyperedge_a, int hyperedge_b){
return hyperedge_a * (1LL << 31) + hyperedge_b;
}
int main(int argc, char *argv[])
{
chrono::system_clock::time_point start;
chrono::system_clock::time_point run_start;
chrono::duration<double> dur;
int progress;
int sampling_size = stoi(argv[1]);
int num_threads = stoi(argv[2]);
omp_set_num_threads(num_threads);
string graphFile = "dblp_graph.txt";
cout << "Sampling size: " << sampling_size << endl << endl;
// Read data
start = chrono::system_clock::now();
vector< vector<int> > node2hyperedge;
vector< vector<int> > hyperedge2node;
vector< unordered_set<int> > hyperedge2node_set;
read_data(graphFile, node2hyperedge, hyperedge2node, hyperedge2node_set);
int V = node2hyperedge.size(), E = hyperedge2node.size();
cout << "# of nodes: " << V << '\n';
cout << "# of hyperedges: " << E << '\n';
dur = std::chrono::system_clock::now() - start;
cout << "Reading data done: "
<< dur.count() << " sec" << endl;
cout << "------------------------------------------" << endl << endl;
// Adjacency list construction
chrono::system_clock::time_point ss = chrono::system_clock::now();
start = chrono::system_clock::now();
run_start = chrono::system_clock::now();
hyperedge2node.resize(E); hyperedge2node_set.resize(E);
vector< vector< pair<int, int> > > hyperedge_adj;
vector< unordered_map<int, int> > hyperedge_inter;
hyperedge_adj.resize(E);
hyperedge_inter.resize(E);
vector< vector<long long> > upd_time(num_threads);
vector< hyperwedge > W;
vector< long long > W_cnt(E + 1, 0LL);
for(int i=0;i<num_threads;i++){
upd_time[i].resize(E, -1LL);
}
#pragma omp parallel for
for (int hyperedge_a = 0; hyperedge_a < E; hyperedge_a++){
int tid = omp_get_thread_num();
int deg_a = 0;
long long l_hyperedge_a = (long long)hyperedge_a;
for (const int &node: hyperedge2node[hyperedge_a]){
for (const int &hyperedge_b: node2hyperedge[node]){
if (hyperedge_b == hyperedge_a) continue;
if ((upd_time[tid][hyperedge_b] >> 31) ^ hyperedge_a){
upd_time[tid][hyperedge_b] = (l_hyperedge_a << 31) + deg_a; deg_a++;
hyperedge_adj[hyperedge_a].push_back({hyperedge_b, 0});
if (hyperedge_a < hyperedge_b) W_cnt[hyperedge_a + 1]++;
}
hyperedge_adj[hyperedge_a][(int)(upd_time[tid][hyperedge_b] & 0x7FFFFFFFLL)].second++;
}
}
}
for (int i = 0; i < E; i++) W_cnt[i + 1] += W_cnt[i];
W.resize(W_cnt[E]);
#pragma omp parallel for
for (int hyperedge_a = 0; hyperedge_a < E; hyperedge_a++){
int deg_a = hyperedge_adj[hyperedge_a].size();
hyperedge_inter[hyperedge_a].rehash(deg_a);
int _cnt = 0;
for (int i = 0; i < deg_a; i++){
int hyperedge_b = hyperedge_adj[hyperedge_a][i].first;
int C_ab = hyperedge_adj[hyperedge_a][i].second;
hyperedge_inter[hyperedge_a].insert({hyperedge_b, C_ab});
if (hyperedge_a < hyperedge_b) {
W[W_cnt[hyperedge_a] + _cnt] = hyperwedge{hyperedge_a, hyperedge_b, C_ab};
_cnt++;
}
}
}
dur = std::chrono::system_clock::now() - start;
cout << "# of hyperwedges: " << W.size() << "\n";
cout << "Adjacency list construction done: "
<< dur.count() << " sec" << endl;
cout << "------------------------------------------" << endl << endl;
// h_motif counting via hyperwedge smapling
start = chrono::system_clock::now();
vector< vector<long long> > h_motif(num_threads);
vector< vector<int> > intersection(num_threads);
mt19937 gen[num_threads];
uniform_int_distribution<> dist[num_threads];
for(int i=0;i<num_threads;i++){
gen[i] = mt19937(2020 * (i + 1));
dist[i] = uniform_int_distribution<>(0, ((int)W.size())-1-1);
std::fill(upd_time[i].begin(), upd_time[i].end(), -1LL);
intersection[i].resize(V);
h_motif[i].resize(30, 0);
}
vector< std::atomic_flag > mutex(E);
#pragma omp parallel for
for (int sample = 0; sample < sampling_size; sample++){
int tid = omp_get_thread_num();
int sample_index = dist[tid](gen[tid]);
int hyperedge_a = W[sample_index].a;
int hyperedge_b = W[sample_index].b;
int C_ab = W[sample_index].C_ab;
int size_a = (int)hyperedge2node[hyperedge_a].size();
int size_b = (int)hyperedge2node[hyperedge_b].size();
int deg_a = (int)hyperedge_adj[hyperedge_a].size();
int deg_b = (int)hyperedge_adj[hyperedge_b].size();
upd_time[tid][hyperedge_a] = upd_time[tid][hyperedge_b] = sample;
int min_ab = hyperedge_a, max_ab = hyperedge_b;
if (size_a > size_b) min_ab = hyperedge_b, max_ab = hyperedge_a;
const auto &nodes = hyperedge2node_set[max_ab]; auto it_end = nodes.end(); int cnt = 0;
for (const int &node: hyperedge2node[min_ab]){ if(nodes.find(node) != it_end) intersection[tid][cnt++] = node;}
for (int i = 0; i < deg_b; i++){
int hyperedge_c = hyperedge_adj[hyperedge_b][i].first, C_bc = hyperedge_adj[hyperedge_b][i].second;
if (upd_time[tid][hyperedge_c] ^ sample){
upd_time[tid][hyperedge_c] = sample;
int size_c = (int)hyperedge2node[hyperedge_c].size();
int C_ca = 0, g_abc = 0;
while(mutex[hyperedge_a].test_and_set(std::memory_order_acquire));
C_ca = hyperedge_inter[hyperedge_a][hyperedge_c];
mutex[hyperedge_a].clear(std::memory_order_release);
const auto &nodes = hyperedge2node_set[hyperedge_c]; auto it_end = nodes.end();
for (int k = 0; k < C_ab; k++){ if(nodes.find(intersection[tid][k]) != it_end) g_abc++; }
int motif_index = get_motif_index_new(size_a, size_b, size_c, C_ab, C_bc, C_ca, g_abc);
h_motif[tid][motif_index]++;
}
}
for (int i = 0; i < deg_a; i++){
int hyperedge_c = hyperedge_adj[hyperedge_a][i].first, C_ca = hyperedge_adj[hyperedge_a][i].second;
if (upd_time[tid][hyperedge_c] ^ sample){
upd_time[tid][hyperedge_c] = sample;
int size_c = (int)hyperedge2node[hyperedge_c].size();
int C_bc = 0, g_abc = 0;
int motif_index = get_motif_index_new(size_a, size_b, size_c, C_ab, C_bc, C_ca, g_abc);
h_motif[tid][motif_index]++;
}
}
}
int index = 0;
vector<long double> h_motif_final(30, 0);
for (int i = 0; i < 30; i++){
for(int j=0;j<num_threads;j++) h_motif_final[i] += h_motif[j][i];
h_motif_final[i] *= (long double)W.size() / sampling_size;
if (20 <= i && i <= 25)
h_motif_final[i] /= 2.0;
else
h_motif_final[i] /= 3.0;
if (i == 0 || i == 1 || i == 4 || i == 6) continue;
cout << "h-motif " << ++index << ": " << h_motif_final[i] << endl;
}
dur = std::chrono::system_clock::now() - run_start;
double runtime = (double)dur.count();
dur = std::chrono::system_clock::now() - start;
cout << "\nHypergraph motif counting done: "
<< dur.count() << " sec" << endl;
cout << "Total runtime: " << runtime << endl;
cout << "-----------------------------------------" << endl << endl;
W.clear();
node2hyperedge.clear();
hyperedge2node.clear();
hyperedge2node_set.clear();
h_motif.clear();
intersection.clear();
hyperedge_adj.clear();
hyperedge_inter.clear();
upd_time.clear();
return 0;
}