Skip to content

Commit 5106764

Browse files
authored
SYCL: Add ROPE vision kernel (#12887)
* SYCL: Add ROPE vision kernel * Add comment about rope mode
1 parent daa4228 commit 5106764

File tree

2 files changed

+105
-7
lines changed

2 files changed

+105
-7
lines changed

ggml/src/ggml-sycl/ggml-sycl.cpp

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4009,10 +4009,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
40094009
case GGML_OP_ROPE:
40104010
{
40114011
const int mode = ((const int32_t *) op->op_params)[2];
4012-
if (mode & GGML_ROPE_TYPE_MROPE) {
4013-
return false;
4014-
}
4015-
if (mode & GGML_ROPE_TYPE_VISION) {
4012+
// mode is not used as a bitmask in practice, the various rope type modes are independent implementations
4013+
if (mode == GGML_ROPE_TYPE_MROPE) {
40164014
return false;
40174015
}
40184016
return ggml_is_contiguous(op->src[0]);

ggml/src/ggml-sycl/rope.cpp

Lines changed: 103 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,15 @@
11
#include "rope.hpp"
2+
#include "ggml-sycl/common.hpp"
3+
#include "ggml.h"
24

35
struct rope_corr_dims {
46
float v[2];
57
};
68

9+
struct mrope_sections {
10+
int v[4];
11+
};
12+
713
static float rope_yarn_ramp(const float low, const float high, const int i0) {
814
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
915
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
@@ -114,6 +120,48 @@ static void rope_neox(
114120
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
115121
}
116122

123+
template <typename T, bool has_ff>
124+
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
125+
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
126+
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
127+
const float theta_scale, const float * freq_factors, const mrope_sections sections,
128+
const sycl::nd_item<3> & item_ct1) {
129+
// get index pos
130+
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
131+
if (i0 >= ne0) {
132+
return;
133+
}
134+
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
135+
const int row_x = row_dst % ne1;
136+
const int channel_x = row_dst / ne1;
137+
const int idst = (row_dst * ne0) + (i0 / 2);
138+
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
139+
140+
const int sect_dims = sections.v[0] + sections.v[1];
141+
const int sector = (i0 / 2) % sect_dims;
142+
143+
float theta_base = 0.0f;
144+
if (sector < sections.v[0]) {
145+
const int p = sector;
146+
theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
147+
} else {
148+
// Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
149+
const int p = sector - sections.v[0];
150+
theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
151+
}
152+
153+
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
154+
float cos_theta;
155+
float sin_theta;
156+
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
157+
const float x0 = x[ix + 0];
158+
const float x1 = x[ix + n_dims];
159+
160+
// store results in dst
161+
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
162+
dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
163+
}
164+
117165
template <typename T>
118166
static void rope_norm_sycl(
119167
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
@@ -192,21 +240,58 @@ static void rope_neox_sycl(
192240
}
193241
}
194242

243+
// rope vision
244+
template <typename T>
245+
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
246+
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
247+
const float freq_scale, const float freq_base, const float ext_factor,
248+
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
249+
const mrope_sections sections, queue_ptr stream) {
250+
GGML_ASSERT(ne0 % 2 == 0);
251+
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
252+
const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
253+
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
254+
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
255+
256+
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
257+
// Add FP16 capability check if T could be sycl::half
258+
if constexpr (std::is_same_v<T, sycl::half>) {
259+
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
260+
}
261+
// launch kernel
262+
if (freq_factors == nullptr) {
263+
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
264+
rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
265+
corr_dims, theta_scale, freq_factors, sections, item_ct1);
266+
});
267+
} else {
268+
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
269+
rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
270+
corr_dims, theta_scale, freq_factors, sections, item_ct1);
271+
});
272+
}
273+
}
274+
195275
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
196276

197277
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
198278
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
199279
GGML_ASSERT(dst->src[0]->type == dst->type);
200-
201-
const int64_t ne00 = dst->src[0]->ne[0];
202-
const int64_t ne01 = dst->src[0]->ne[1];
280+
const int64_t ne00 = dst->src[0]->ne[0]; // head dims
281+
const int64_t ne01 = dst->src[0]->ne[1]; // num heads
282+
const int64_t ne02 = dst->src[0]->ne[2]; // num heads
203283
const int64_t nr = ggml_nrows(dst->src[0]);
204284

285+
const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
286+
const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);
287+
288+
205289
//const int n_past = ((int32_t *) dst->op_params)[0];
206290
const int n_dims = ((int32_t *) dst->op_params)[1];
207291
const int mode = ((int32_t *) dst->op_params)[2];
208292
//const int n_ctx = ((int32_t *) dst->op_params)[3];
209293
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
294+
mrope_sections sections;
210295

211296
// RoPE alteration for extended context
212297
float freq_base;
@@ -222,8 +307,10 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
222307
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
223308
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
224309
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
310+
memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
225311

226312
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
313+
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
227314

228315
const int32_t * pos = (const int32_t *) dst->src[1]->data;
229316

@@ -240,6 +327,7 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
240327

241328
// compute
242329
if (is_neox) {
330+
GGML_SYCL_DEBUG("%s: neox path\n", __func__);
243331
if (dst->src[0]->type == GGML_TYPE_F32) {
244332
rope_neox_sycl(
245333
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
@@ -253,7 +341,19 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
253341
} else {
254342
GGML_ABORT("fatal error");
255343
}
344+
} else if (is_vision) {
345+
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
346+
if (dst->src[0]->type == GGML_TYPE_F16) {
347+
rope_vision_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
348+
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
349+
} else if (dst->src[0]->type == GGML_TYPE_F32) {
350+
rope_vision_sycl((const float *) dst->src[0]->data, (float *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
351+
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
352+
} else {
353+
GGML_ABORT("Fatal error: Tensor type unsupported!");
354+
}
256355
} else {
356+
GGML_SYCL_DEBUG("%s: norm path\n", __func__);
257357
if (dst->src[0]->type == GGML_TYPE_F32) {
258358
rope_norm_sycl(
259359
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,

0 commit comments

Comments
 (0)