1
1
#include " rope.hpp"
2
+ #include " ggml-sycl/common.hpp"
3
+ #include " ggml.h"
2
4
3
5
struct rope_corr_dims {
4
6
float v[2 ];
5
7
};
6
8
9
+ struct mrope_sections {
10
+ int v[4 ];
11
+ };
12
+
7
13
static float rope_yarn_ramp (const float low, const float high, const int i0) {
8
14
const float y = (i0 / 2 - low) / sycl::max (0 .001f , high - low);
9
15
return 1 .0f - sycl::min (1 .0f , sycl::max (0 .0f , y));
@@ -114,6 +120,48 @@ static void rope_neox(
114
120
dst[i + n_dims/2 ] = x0*sin_theta + x1*cos_theta;
115
121
}
116
122
123
+ template <typename T, bool has_ff>
124
+ static void rope_vision (const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
125
+ const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
126
+ const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
127
+ const float theta_scale, const float * freq_factors, const mrope_sections sections,
128
+ const sycl::nd_item<3 > & item_ct1) {
129
+ // get index pos
130
+ const int i0 = 2 * (item_ct1.get_group (1 ) * item_ct1.get_local_range (1 ) + item_ct1.get_local_id (1 ));
131
+ if (i0 >= ne0) {
132
+ return ;
133
+ }
134
+ const int row_dst = (item_ct1.get_group (2 ) * item_ct1.get_local_range (2 )) + item_ct1.get_local_id (2 );
135
+ const int row_x = row_dst % ne1;
136
+ const int channel_x = row_dst / ne1;
137
+ const int idst = (row_dst * ne0) + (i0 / 2 );
138
+ const size_t ix = ((size_t ) channel_x * s2) + ((size_t ) row_x * s1) + (i0 / 2 );
139
+
140
+ const int sect_dims = sections.v [0 ] + sections.v [1 ];
141
+ const int sector = (i0 / 2 ) % sect_dims;
142
+
143
+ float theta_base = 0 .0f ;
144
+ if (sector < sections.v [0 ]) {
145
+ const int p = sector;
146
+ theta_base = pos[channel_x] * sycl::pow (theta_scale, (float ) p);
147
+ } else {
148
+ // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
149
+ const int p = sector - sections.v [0 ];
150
+ theta_base = pos[channel_x + ne2] * sycl::pow (theta_scale, (float ) p);
151
+ }
152
+
153
+ const float freq_factor = has_ff ? freq_factors[i0 / 2 ] : 1 .0f ;
154
+ float cos_theta;
155
+ float sin_theta;
156
+ rope_yarn (theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
157
+ const float x0 = x[ix + 0 ];
158
+ const float x1 = x[ix + n_dims];
159
+
160
+ // store results in dst
161
+ dst[idst + 0 ] = x0 * cos_theta - x1 * sin_theta;
162
+ dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
163
+ }
164
+
117
165
template <typename T>
118
166
static void rope_norm_sycl (
119
167
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
@@ -192,21 +240,58 @@ static void rope_neox_sycl(
192
240
}
193
241
}
194
242
243
+ // rope vision
244
+ template <typename T>
245
+ static void rope_vision_sycl (const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
246
+ const size_t s2, const int n_dims, const int nr, const int32_t * pos,
247
+ const float freq_scale, const float freq_base, const float ext_factor,
248
+ const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
249
+ const mrope_sections sections, queue_ptr stream) {
250
+ GGML_ASSERT (ne0 % 2 == 0 );
251
+ const sycl::range<3 > block_dims (1 , SYCL_ROPE_BLOCK_SIZE, 1 );
252
+ const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1 ) / (2 * SYCL_ROPE_BLOCK_SIZE);
253
+ const sycl::range<3 > grid_dims (1 , n_blocks_y, nr);
254
+ const sycl::nd_range<3 > nd_range (grid_dims * block_dims, block_dims);
255
+
256
+ const float theta_scale = std::pow (freq_base, -2 .0f / n_dims);
257
+ // Add FP16 capability check if T could be sycl::half
258
+ if constexpr (std::is_same_v<T, sycl::half>) {
259
+ dpct::has_capability_or_fail (stream->get_device (), { sycl::aspect::fp16 });
260
+ }
261
+ // launch kernel
262
+ if (freq_factors == nullptr ) {
263
+ stream->parallel_for (nd_range, [=](sycl::nd_item<3 > item_ct1) {
264
+ rope_vision<T, false >(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
265
+ corr_dims, theta_scale, freq_factors, sections, item_ct1);
266
+ });
267
+ } else {
268
+ stream->parallel_for (nd_range, [=](sycl::nd_item<3 > item_ct1) {
269
+ rope_vision<T, true >(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
270
+ corr_dims, theta_scale, freq_factors, sections, item_ct1);
271
+ });
272
+ }
273
+ }
274
+
195
275
void ggml_sycl_op_rope (ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
196
276
197
277
GGML_ASSERT (dst->src [0 ]->type == GGML_TYPE_F32 || dst->src [0 ]->type == GGML_TYPE_F16);
198
278
GGML_ASSERT ( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
199
279
GGML_ASSERT (dst->src [0 ]->type == dst->type );
200
-
201
- const int64_t ne00 = dst->src [0 ]->ne [0 ];
202
- const int64_t ne01 = dst->src [0 ]->ne [1 ];
280
+ const int64_t ne00 = dst-> src [ 0 ]-> ne [ 0 ]; // head dims
281
+ const int64_t ne01 = dst->src [0 ]->ne [1 ]; // num heads
282
+ const int64_t ne02 = dst->src [0 ]->ne [2 ]; // num heads
203
283
const int64_t nr = ggml_nrows (dst->src [0 ]);
204
284
285
+ const size_t s01 = dst->src [0 ]->nb [1 ] / ggml_type_size (dst->src [0 ]->type );
286
+ const size_t s02 = dst->src [0 ]->nb [2 ] / ggml_type_size (dst->src [0 ]->type );
287
+
288
+
205
289
// const int n_past = ((int32_t *) dst->op_params)[0];
206
290
const int n_dims = ((int32_t *) dst->op_params )[1 ];
207
291
const int mode = ((int32_t *) dst->op_params )[2 ];
208
292
// const int n_ctx = ((int32_t *) dst->op_params)[3];
209
293
const int n_ctx_orig = ((int32_t *) dst->op_params )[4 ];
294
+ mrope_sections sections;
210
295
211
296
// RoPE alteration for extended context
212
297
float freq_base;
@@ -222,8 +307,10 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
222
307
memcpy (&attn_factor, (int32_t *) dst->op_params + 8 , sizeof (float ));
223
308
memcpy (&beta_fast, (int32_t *) dst->op_params + 9 , sizeof (float ));
224
309
memcpy (&beta_slow, (int32_t *) dst->op_params + 10 , sizeof (float ));
310
+ memcpy (§ions.v , (int32_t *) dst->op_params + 11 , sizeof (int )*4 );
225
311
226
312
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
313
+ const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
227
314
228
315
const int32_t * pos = (const int32_t *) dst->src [1 ]->data ;
229
316
@@ -240,6 +327,7 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
240
327
241
328
// compute
242
329
if (is_neox) {
330
+ GGML_SYCL_DEBUG (" %s: neox path\n " , __func__);
243
331
if (dst->src [0 ]->type == GGML_TYPE_F32) {
244
332
rope_neox_sycl (
245
333
(const float *)dst->src [0 ]->data , (float *)dst->data , ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
@@ -253,7 +341,19 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
253
341
} else {
254
342
GGML_ABORT (" fatal error" );
255
343
}
344
+ } else if (is_vision) {
345
+ GGML_SYCL_DEBUG (" %s: vision path\n " , __func__);
346
+ if (dst->src [0 ]->type == GGML_TYPE_F16) {
347
+ rope_vision_sycl ((const sycl::half *)dst->src [0 ]->data , (sycl::half *)dst->data , ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
348
+ freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
349
+ } else if (dst->src [0 ]->type == GGML_TYPE_F32) {
350
+ rope_vision_sycl ((const float *) dst->src [0 ]->data , (float *)dst->data , ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
351
+ freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
352
+ } else {
353
+ GGML_ABORT (" Fatal error: Tensor type unsupported!" );
354
+ }
256
355
} else {
356
+ GGML_SYCL_DEBUG (" %s: norm path\n " , __func__);
257
357
if (dst->src [0 ]->type == GGML_TYPE_F32) {
258
358
rope_norm_sycl (
259
359
(const float *)dst->src [0 ]->data , (float *)dst->data , ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
0 commit comments