@@ -341,7 +341,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
341
341
assert (tensor->view_src ->buffer ->buft == buffer->buft );
342
342
return GGML_STATUS_SUCCESS;
343
343
}
344
- if (tensor->type == GGML_TYPE_Q4_0) {
344
+ if (tensor->type == GGML_TYPE_Q4_0 || tensor-> type == GGML_TYPE_Q4_K ) {
345
345
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
346
346
tensor->extra = extra;
347
347
ctx->tensor_extras .push_back (extra); // used to release it when destroy ctx.
@@ -2858,6 +2858,7 @@ inline bool ggml_sycl_supports_reorder_dmmv(enum ggml_type type) {
2858
2858
inline bool ggml_sycl_supports_reorder_mmvq (enum ggml_type type) {
2859
2859
switch (type) {
2860
2860
case GGML_TYPE_Q4_0:
2861
+ case GGML_TYPE_Q4_K:
2861
2862
return true ;
2862
2863
default :
2863
2864
return false ;
@@ -2883,16 +2884,16 @@ static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
2883
2884
}
2884
2885
}
2885
2886
2886
- static void reorder_qw ( char * data_device, const int ncols, const int nrows,
2887
- size_t size, size_t offset, dpct::queue_ptr stream) {
2888
- auto tmp_buf = sycl::malloc_shared<char >(size, *stream);
2887
+ static void reorder_qw_q4_0 ( uint8_t * data_device, const int ncols, const int nrows, size_t size, size_t offset ,
2888
+ dpct::queue_ptr stream) {
2889
+ auto * tmp_buf = sycl::malloc_shared<uint8_t >(size, *stream);
2889
2890
SYCL_CHECK (
2890
2891
CHECK_TRY_ERROR ((*stream).memcpy (tmp_buf, data_device, size)
2891
2892
.wait ()));
2892
2893
GGML_ASSERT ((size % sizeof (block_q4_0) == 0 ));
2893
2894
GGML_ASSERT ((offset % sizeof (block_q4_0) == 0 ));
2894
2895
int offset_blks = offset / sizeof (block_q4_0);
2895
- auto qs_ptr = ( uint8_t *) data_device + offset_blks * QK4_0 / 2 ;
2896
+ auto qs_ptr = data_device + offset_blks * QK4_0 / 2 ;
2896
2897
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2 ) + offset_blks;
2897
2898
2898
2899
stream->parallel_for (
@@ -2911,13 +2912,54 @@ static void reorder_qw(char *data_device, const int ncols, const int nrows,
2911
2912
sycl::free (tmp_buf, *stream);
2912
2913
}
2913
2914
2915
+ static void reorder_qw_q4_k (uint8_t * data_device, size_t size, size_t offset, dpct::queue_ptr stream) {
2916
+ GGML_ASSERT (size % sizeof (block_q4_K) == 0 );
2917
+ GGML_ASSERT (offset % sizeof (block_q4_K) == 0 );
2918
+
2919
+ const int nblocks = size / sizeof (block_q4_K);
2920
+
2921
+ auto * tmp_buf = sycl::malloc_device<uint8_t >(size, *stream);
2922
+ SYCL_CHECK (CHECK_TRY_ERROR ((*stream).memcpy (tmp_buf, data_device, size).wait ()));
2923
+
2924
+ auto * qs_ptr = data_device;
2925
+ auto * scales_ptr = qs_ptr + QK_K / 2 * nblocks;
2926
+ auto * dm_ptr = (sycl::half2 *) (scales_ptr + K_SCALE_SIZE * nblocks);
2927
+
2928
+ stream->parallel_for (nblocks, [=](auto i) {
2929
+ const block_q4_K * x = (const block_q4_K *) tmp_buf;
2930
+ const int ib = i;
2931
+
2932
+ for (int j = 0 ; j < QK_K / 2 ; ++j) {
2933
+ qs_ptr[ib * (QK_K / 2 ) + j] = x[ib].qs [j];
2934
+ }
2935
+
2936
+ for (int j = 0 ; j < K_SCALE_SIZE; ++j) {
2937
+ scales_ptr[ib * K_SCALE_SIZE + j] = x[ib].scales [j];
2938
+ }
2939
+
2940
+ dm_ptr[ib] = x[ib].dm ;
2941
+ });
2942
+
2943
+ sycl::free (tmp_buf, *stream);
2944
+ }
2945
+
2914
2946
static void reorder_qw (const ggml_tensor * src0, dpct::queue_ptr stream) {
2915
- char * data_device = (char *) src0->data ;
2947
+ uint8_t * data_device = (uint8_t *) src0->data ;
2916
2948
size_t ncols = src0->ne [0 ];
2917
2949
size_t nrows = src0->ne [1 ];
2918
2950
size_t size = ggml_nbytes (src0);
2919
2951
2920
- reorder_qw (data_device, ncols, nrows, size, 0 , stream);
2952
+ switch (src0->type ) {
2953
+ case GGML_TYPE_Q4_0:
2954
+ reorder_qw_q4_0 (data_device, ncols, nrows, size, 0 , stream);
2955
+ break ;
2956
+ case GGML_TYPE_Q4_K:
2957
+ reorder_qw_q4_k (data_device, size, 0 , stream);
2958
+ break ;
2959
+ default :
2960
+ GGML_ABORT (" reorder_qw() called with unsupported type" );
2961
+ break ;
2962
+ }
2921
2963
}
2922
2964
2923
2965
static bool should_reorder_tensor (ggml_backend_sycl_context& ctx, const ggml_tensor * dst) {
@@ -2943,8 +2985,18 @@ static void opt_for_reorder(ggml_backend_sycl_context * ctx, const ggml_tensor *
2943
2985
}
2944
2986
}
2945
2987
2946
- static void ggml_sycl_mul_mat (ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
2947
2988
2989
+ static bool can_use_dequantize_mul_mat_vec (const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
2990
+ return ggml_sycl_supports_dmmv (src0->type ) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
2991
+ src0->ne [0 ] % GGML_SYCL_DMMV_X == 0 && src1->ne [1 ] == 1 ;
2992
+ }
2993
+
2994
+ static bool can_use_mul_mat_vec_q (const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
2995
+ return ggml_is_quantized (src0->type ) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
2996
+ src1->ne [1 ] <= MMVQ_MAX_BATCH_SIZE;
2997
+ }
2998
+
2999
+ static void ggml_sycl_mul_mat (ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
2948
3000
const bool split = ggml_backend_buffer_is_sycl_split (src0->buffer );
2949
3001
int64_t min_compute_capability = INT_MAX;
2950
3002
@@ -2966,14 +3018,11 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
2966
3018
min_compute_capability = ggml_sycl_info ().devices [ctx.device ].cc ;
2967
3019
}
2968
3020
3021
+ // TODO: make these into functions, add mmvq check for reorder
2969
3022
// check data types and tensor shapes for custom matrix multiplication kernels:
2970
- bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv (src0->type )
2971
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
2972
- && src0->ne [0 ] % GGML_SYCL_DMMV_X == 0 && src1->ne [1 ] == 1 ;
3023
+ bool use_dequantize_mul_mat_vec = can_use_dequantize_mul_mat_vec (src0, src1, dst);
2973
3024
2974
- bool use_mul_mat_vec_q = ggml_is_quantized (src0->type )
2975
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
2976
- && src1->ne [1 ] <= MMVQ_MAX_BATCH_SIZE;
3025
+ bool use_mul_mat_vec_q = can_use_mul_mat_vec_q (src0, src1, dst);
2977
3026
2978
3027
bool use_mul_mat_q = ggml_sycl_supports_mmq (src0->type )
2979
3028
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
@@ -3658,11 +3707,10 @@ static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
3658
3707
SYCL_CHECK (CHECK_TRY_ERROR ((stream)->wait ()));
3659
3708
3660
3709
GGML_UNUSED (backend);
3661
- }
3662
- catch (sycl::exception const &exc) {
3663
- std::cerr << exc.what () << " Exception caught at file:" << __FILE__
3664
- << " , line:" << __LINE__ << std::endl;
3665
- std::exit (1 );
3710
+
3711
+ } catch (const sycl::exception & exc) {
3712
+ std::cerr << exc.what () << " Exception caught at file:" << __FILE__ << " , line:" << __LINE__ << std::endl;
3713
+ std::exit (1 );
3666
3714
}
3667
3715
3668
3716
static void ggml_backend_sycl_graph_compute_impl (ggml_backend_sycl_context * sycl_ctx, ggml_cgraph * cgraph) {
0 commit comments