-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathggTimeSeries.html
432 lines (359 loc) · 16.3 KB
/
ggTimeSeries.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<title>ggplot2 extensions: ggTimeSeries</title>
<script src="libs/jquery-1.11.0/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="libs/bootstrap-3.3.1/css/cosmo.min.css" rel="stylesheet" />
<script src="libs/bootstrap-3.3.1/js/bootstrap.min.js"></script>
<script src="libs/bootstrap-3.3.1/shim/html5shiv.min.js"></script>
<script src="libs/bootstrap-3.3.1/shim/respond.min.js"></script>
<!-- Styles for this site -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="css/styles.css" rel="stylesheet">
<!-- Polyfill JS -->
<script src="js/polyfill.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<link rel="stylesheet"
href="libs/highlight/textmate.css"
type="text/css" />
<script src="libs/highlight/highlight.js"></script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
</style>
<div class="container-fluid main-container">
<!--html_preserve-->
<div class="header">
<nav class="navbar">
<h3 class="navbar-left"><strong>ggplot2</strong> extensions</h3>
<ul class="nav nav-pills navbar-right">
<li role="presentation" id="nav-home"><a href="index.html">Home</a></li>
<li role="presentation" id="nav-showcase"><a href="ggiraph.html">Extensions</a></li>
<li role="presentation" id="nav-github"><a href="https://github.com/ggplot2-exts/ggplot2-exts.github.io">GitHub</a></li>
</ul>
</nav>
</div>
<div class="showcase-header">
<div id = "showcase-intro">
ggplot2 now has an official extension mechanism. This means that others can now easily create their own stats, geoms and positions, and provide them in other packages. This should allow the ggplot2 community to flourish, even as less development work happens in ggplot2 itself. This page showcases these extensions.
</div>
<div class="container-fluid">
<div class="row">
<div class="col-sm-4">
<div class="list-group">
<a href="ggiraph.html" class="list-group-item">
<h5 class="list-group-item-heading">ggiraph</h5>
<p class="list-group-item-text">Make ggplot interactive</p>
</a>
<a href="ggstance.html" class="list-group-item">
<h5 class="list-group-item-heading">ggstance</h5>
<p class="list-group-item-text">Horizontal versions of ggplot2 geoms</p>
</a>
<a href="ggalt.html" class="list-group-item">
<h5 class="list-group-item-heading">ggalt</h5>
<p class="list-group-item-text">Extra coordinate systems, geoms & stats</p>
</a>
<a href="ggforce.html" class="list-group-item">
<h5 class="list-group-item-heading">ggforce</h5>
<p class="list-group-item-text">Accelarating ggplot2</p>
</a>
<a href="ggrepel.html" class="list-group-item">
<h5 class="list-group-item-heading">ggrepel</h5>
<p class="list-group-item-text">Repel overlapping text labels</p>
</a>
<a href="ggraph.html" class="list-group-item">
<h5 class="list-group-item-heading">ggraph</h5>
<p class="list-group-item-text">Plot graph-like data structures</p>
</a>
<a href="ggpmisc.html" class="list-group-item">
<h5 class="list-group-item-heading">ggpmisc</h5>
<p class="list-group-item-text">Miscellaneous extensions to ggplot2</p>
</a>
<a href="geomnet.html" class="list-group-item">
<h5 class="list-group-item-heading">geomnet</h5>
<p class="list-group-item-text">Network visualizations in ggplot2</p>
</a>
<a href="ggExtra.html" class="list-group-item">
<h5 class="list-group-item-heading">ggExtra</h5>
<p class="list-group-item-text">Marginal density plots or histograms</p>
</a>
<a href="gganimate.html" class="list-group-item">
<h5 class="list-group-item-heading">gganimate</h5>
<p class="list-group-item-text">Create easy animations with ggplot2</p>
</a>
<a href="plotROC.html" class="list-group-item">
<h5 class="list-group-item-heading">plotROC</h5>
<p class="list-group-item-text">Interactive ROC plots</p>
</a>
<a href="ggthemes.html" class="list-group-item">
<h5 class="list-group-item-heading">ggthemes</h5>
<p class="list-group-item-text">ggplot themes and scales</p>
</a>
<a href="ggspectra.html" class="list-group-item">
<h5 class="list-group-item-heading">ggspectra</h5>
<p class="list-group-item-text">Extensions for radiation spectra</p>
</a>
<a href="ggnetwork.html" class="list-group-item">
<h5 class="list-group-item-heading">ggnetwork</h5>
<p class="list-group-item-text">Geoms to plot networks with ggplot2</p>
</a>
<a href="ggtech.html" class="list-group-item">
<h5 class="list-group-item-heading">ggtech</h5>
<p class="list-group-item-text">ggplot2 tech themes, scales, and geoms</p>
</a>
<a href="ggradar.html" class="list-group-item">
<h5 class="list-group-item-heading">ggradar</h5>
<p class="list-group-item-text">radar charts with ggplot2</p>
</a>
<a href="ggTimeSeries.html" class="list-group-item">
<h5 class="list-group-item-heading">ggTimeSeries</h5>
<p class="list-group-item-text">Time series visualisations</p>
</a>
<a href="ggtree.html" class="list-group-item">
<h5 class="list-group-item-heading">ggtree</h5>
<p class="list-group-item-text">A phylogenetic tree viewer</p>
</a>
<a href="ggseas.html" class="list-group-item">
<h5 class="list-group-item-heading">ggseas</h5>
<p class="list-group-item-text">Seasonal adjustment on the fly</p>
</a>
</div> <!-- list-group -->
</div> <!-- col-sm-4 -->
<div id="ggtimeseries" class="col-sm-8">
<h3>ggTimeSeries</h3>
<p><a href="https://github.com/Ather-Energy/ggTimeSeries" class="uri">https://github.com/Ather-Energy/ggTimeSeries</a></p>
<p>This R package offers novel time series visualisations. It is based on <code>ggplot2</code> and offers <code>geom</code>s and pre-packaged functions for easily creating any of the offered charts. Some examples are listed below.</p>
<pre class="r"><code># Example from https://github.com/Ather-Energy/ggTimeSeries
library(ggplot2)
library(ggthemes)
library(data.table)
library(ggTimeSeries)</code></pre>
<div id="line-charts-legacy" class="section level2">
<h2>Line Charts Legacy</h2>
<p>IoT devices generate a lot of sequential data over time, also called time series data. Legacy portrayals of such data would centre around line charts. Line charts have reportedly been around since the early 1700s (source: Wikipedia) and we have nothing against them. They facilitate trend detection and comparison, are simple to draw, and easy to understand; all in all a very well behaved visualisation. In modern times, their use is widespread from the heartbeat monitor at a hospital to the multiple-monitor display at a trader’s desk.</p>
<pre><code>## [1] "Excel 97 look recreated in R with the ggthemes package"</code></pre>
<p><img src="ggTimeSeries_files/figure-html/excel97_line-1.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
</div>
<div id="alternatives" class="section level2">
<h2>Alternatives</h2>
<p>However there are cases when the data scientist becomes more demanding and specific. Five alternatives available to such a data scientist are listed below. All of these options are available as <code>geom</code>s or packaged functions in the <code>ggplot2</code> based <code>ggTimeSeries</code> package.</p>
<p>Before that, setting a minimal theme -</p>
<pre class="r"><code>minimalTheme = theme_set(theme_bw(12))
minimalTheme = theme_update(
axis.ticks = element_blank(),
legend.position = 'none',
strip.background = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
panel.grid = element_blank(),
panel.border = element_blank()
)</code></pre>
<div id="calendar-heatmap" class="section level3">
<h3>Calendar Heatmap</h3>
<p>Available as <code>stat_calendar_heatmap</code> and <code>ggplot_calendar_heatmap</code>.</p>
<p>A calendar heatmap is a great way to visualise daily data. Its structure makes it easy to detect weekly, monthly, or seasonal patterns.</p>
<pre class="r"><code># creating some data
set.seed(1)
dtData = data.table(
DateCol = seq(
as.Date("1/01/2014", "%d/%m/%Y"),
as.Date("31/12/2015", "%d/%m/%Y"),
"days"
),
ValueCol = runif(730)
)
dtData[, ValueCol := ValueCol + (strftime(DateCol,"%u") %in% c(6,7) * runif(1) * 0.75), .I]
dtData[, ValueCol := ValueCol + (abs(as.numeric(strftime(DateCol,"%m")) - 6.5)) * runif(1) * 0.75, .I]
# base plot
p1 = ggplot_calendar_heatmap(
dtData,
'DateCol',
'ValueCol'
)
# adding some formatting
p1 +
xlab('') +
ylab('') +
scale_fill_continuous(low = 'green', high = 'red') +
facet_wrap(~Year, ncol = 1)</code></pre>
<p><img src="ggTimeSeries_files/figure-html/calendar_heatmap-1.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
<pre class="r"><code># creating some categorical data
dtData[, CategCol := letters[1 + round(ValueCol * 7)]]
# base plot
p2 = ggplot_calendar_heatmap(
dtData,
'DateCol',
'CategCol'
)
# adding some formatting
p2 +
xlab('') +
ylab('') +
facet_wrap(~Year, ncol = 1)</code></pre>
<p><img src="ggTimeSeries_files/figure-html/calendar_heatmap-2.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
</div>
<div id="horizon-plots" class="section level3">
<h3>Horizon Plots</h3>
<p>Available as <code>stat_horizon</code> and <code>ggplot_horizon</code>.</p>
<p>Imagine an area chart which has been chopped into multiple chunks of equal height. If you overlay these chunks one on top of the the other, and colour them to indicate which chunk it is, you get a horizon plot. Horizon plots are useful when visualising y values spanning a vast range but with a skewed distribution, and / or trying to highlight outliers without losing context of variation in the rest of the data.</p>
<pre class="r"><code># creating some data
set.seed(1)
dfData = data.frame(x = 1:1000, y = cumsum(rnorm(1000)))
# base plot
p1 = ggplot_horizon(dfData, 'x', 'y')
print("If you're seeing any vertical white stripes, it's a display thing.")</code></pre>
<pre><code>## [1] "If you're seeing any vertical white stripes, it's a display thing."</code></pre>
<pre class="r"><code># adding some formatting
p1 +
xlab('') +
ylab('') +
scale_fill_continuous(low = 'green', high = 'red') +
coord_fixed( 0.5 * diff(range(dfData$x)) / diff(range(dfData$y)))</code></pre>
<p><img src="ggTimeSeries_files/figure-html/horizon-1.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
</div>
<div id="steamgraphs" class="section level3">
<h3>Steamgraphs</h3>
<p>Available as <code>stat_steamgraph</code>.</p>
<p>A steamgraph is a more aesthetically appealing version of a stacked area chart. It tries to highlight the changes in the data by placing the groups with the most variance on the edges, and the groups with the least variance towards the centre. This feature in conjunction with the centred alignment of each of the contributing areas makes it easier for the viewer to compare the contribution of any of the components across time.</p>
<pre class="r"><code># creating some data
set.seed(10)
dfData = data.frame(
Time = 1:1000,
Signal = abs(
c(
cumsum(rnorm(1000, 0, 3)),
cumsum(rnorm(1000, 0, 4)),
cumsum(rnorm(1000, 0, 1)),
cumsum(rnorm(1000, 0, 2))
)
),
VariableLabel = c(rep('Class A', 1000), rep('Class B', 1000), rep('Class C', 1000), rep('Class D', 1000))
)
# base plot
p1 = ggplot(dfData, aes(x = Time, y = Signal, group = VariableLabel, fill = VariableLabel)) +
stat_steamgraph()
# adding some formatting
p1 +
xlab('') +
ylab('') +
coord_fixed( 0.2 * diff(range(dfData$Time)) / diff(range(dfData$Signal)))</code></pre>
<p><img src="ggTimeSeries_files/figure-html/steamgraph-1.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
</div>
<div id="waterfall" class="section level3">
<h3>Waterfall</h3>
<p>Available as <code>stat_waterfall</code> and <code>ggplot_waterfall</code>.</p>
<p>Rather than the values itself, a waterfall plot tries to bring out the changes in the values.</p>
<pre class="r"><code># creating some data
set.seed(1)
dfData = data.frame(x = 1:100, y = cumsum(rnorm(100)))
# base plot
p1 = ggplot_waterfall(
dtData = dfData,
'x',
'y'
)
# adding some formatting
p1 +
xlab('') +
ylab('')</code></pre>
<p><img src="ggTimeSeries_files/figure-html/waterfall-1.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
</div>
<div id="occurrence-dot-plot" class="section level3">
<h3>Occurrence Dot Plot</h3>
<p>Available as <code>stat_occurrence</code>.</p>
<p>This one is a favourite in infographics. For rare events, the reader would find it convenient to have the count of events encoded in the chart itself instead of having to map the value back to the Y axis.</p>
<pre class="r"><code># creating some data
set.seed(1)
dfData = data.table(x = 1:100, y = floor(4 * abs(rnorm(100, 0 , 0.4))))
# base plot
p1 = ggplot(dfData, aes(x =x, y = y) )+
stat_occurrence()
# adding some formatting
p1 +
xlab('') +
ylab('') +
coord_fixed(ylim = c(0,1 + max(dfData$y)))</code></pre>
<p><img src="ggTimeSeries_files/figure-html/occurrence_dotplot-1.png" title="" alt="" width="576" style="display: block; margin: auto;" /></p>
</div>
</div>
</div> <!-- col-sm-8 -->
</div> <!-- row -->
</div>
</div> <!-- showcase-header -->
<!--/html_preserve-->
</div> <!-- page-body -->
<footer>
<div> </div>
<div> </div>
<div class="text-muted">
Design inspired by <a href="http://www.htmlwidgets.org/index.html" target="_blank">Ramnath Vaidyanathan, Kenton Russell, and RStudio, Inc</a>.
</div>
<div class="text-muted">
Maintained by <a href="http://www.danielemaasit.com" target="_blank">Daniel Emaasit</a>.
</div>
<div class="text-muted">
Copyright © 2016 The R Community.
</div>
</footer>
<script>
// manage active state of headres and navigation based on current page
$(document).ready(function () {
// compute name of page
href = window.location.pathname;
href = href.substr(href.lastIndexOf('/') + 1);
if (href == "")
href = "index.html";
// main navigation and headers
if (href.startsWith("index")) {
$('#nav-home').addClass('active');
$('.title').addClass('hidden');
} else if (href.startsWith("showcase")) {
$('#nav-showcase').addClass('active');
$("#page-body").detach().appendTo('#showcase-body');
$('.showcase-header').removeClass('hidden');
$('.title').addClass('hidden');
} else if (href.startsWith("develop")) {
$('#nav-develop').addClass('active');
}
// submenu navigation (used by showcase and develop)
$('.list-group a[href="' + href + '"]').addClass('active');
});
</script>
</div>
<script>
// add bootstrap table styles to pandoc tables
$(document).ready(function () {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
});
</script>
</body>
</html>