Skip to content

Commit e63d128

Browse files
authored
v2.0 is published
1 parent 9fb807b commit e63d128

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ TARTES (Two-streAm Radiative TransfEr in Snow model)
44

55
TARTES is a fast and easy-to-use optical radiative transfer model used to compute spectral albedo of a given snowpack as well as the profiles of energy absorption, irradiance within the snowpack and actinic flux. TARTES represents the snowpack as a stack of horizontal homogeneous layers. Each layer is characterized by the snow specific surface area (SSA), snow density, impurities amount and type, and two parameters for the geometric grain shape: the asymmetry factor g and the absorption enhancement parameter B. The albedo of the bottom interface can be prescribed. The model is fast and easy to use compared to more elaborated models like DISORT - MIE (Stamnes et al. 1988). It is based on the Kokhanovsky and Zege, (2004) formalism for weakly absorbing media to describe the single scattering properties of each layers and the delta-Eddington approximation to solve the radiative transfer equation. Despite its simplicity, it is accurate in the visible and near-infrared range for pristine snow as well as snow containing impurities represented as Rayleigh scatterers (their size is assumed much smaller than the wavelength) whose refractive indices and concentrations can be prescribed.
66

7-
TARTES has been initially developed to investigate the influence of the particle shape used to represent snow micro-structure on the penetration of light in the snowpack (Libois et al. 2013, Libois et al. 2014) and to compute the vertical profile of absorbed solar radiation. Nevertheless, it is a general purpose optical radiative transfer model.
7+
TARTES has been initially developed to investigate the influence of the particle shape used to represent snow micro-structure on the penetration of light in the snowpack (Libois et al. 2013, Libois et al. 2014) and to compute the vertical profile of absorbed solar radiation. Nevertheless, it is a general purpose optical radiative transfer model. The latest version 2.0 is described in [Picard and Libois, 2024](https://doi.org/10.5194/gmd-17-8927-2024).
88

99
[Documentation](http://gp.snow-physics.science/tartes/)
1010

0 commit comments

Comments
 (0)