-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathScheduleflow.py
216 lines (175 loc) · 6.41 KB
/
Scheduleflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import division
import networkx as nx
import matplotlib.pyplot as plt
from networkx.algorithms.clique import node_clique_number
from FlowClass import Flow
from FlowOffsetClass import flowTempOffset
from enhancedGreedyFunc import enhancedGreedyFunc
from naiveGreedyFunc import naiveGreedyFunc
from naiveFunc import naiveFunc
from tabuFunc import tabuFunc
from schedule_utilities import *
from divisibility_utility import *
from divisibilityFunc import *
if __name__=='__main__':
cyclenum=50
swNum=15#switch number
flownum=500
queueLength=8000 #8000for15switch 5000for7switch
ddl=15
imp=[]
Suc1=[]
Suc2=[]
Suc3=[]
Suc4=[]
Suc5=[]
Suc6=[]
Time1=[]
Time2=[]
Time3=[]
Time4=[]
Time5=[]
Time6=[]
resUtiRate1=[]
resUtiRate2=[]
resUtiRate3=[]
resUtiRate4=[]
resUtiRate5=[]
resUtiRate6=[]
variance1=[]
variance2=[]
variance3=[]
variance4=[]
variance5=[]
variance6=[]
for cycle in range(cyclenum):
#generate topology G and total number of nodes
G,nodeNum=networkGraph(swNum,'linear')
# nx.draw(G,with_labels=True)
# plt.show()
n_port=0
for i in range(swNum):
n_port=n_port+G.degree(i)
#generate flows
flowSet,T=generateFlow(G,nodeNum,swNum,flownum,ddl)
hostNum=nodeNum-swNum
#Alg-mss
time_Enh,sucRate_Enh,resUtiRate_Enh,variance_Enh=enhancedGreedyFunc(G,flowSet,n_port,T,flownum,queueLength,hostNum,swNum)
print("MSS-SucRate",sucRate_Enh)
print ("MSS-ExecuteTime",time_Enh)
print("MSS-ResourceUtilization",resUtiRate_Enh)
print ("MSS-ResourceVariance",variance_Enh)
for flow in flowSet:
flow.schedFlag=0
flow.offset=100
#Alg-Naive greedy
time_naive_greedy,sucRate_naive_greedy,resUtiRate_naive_greedy,variance_naive_greedy=naiveGreedyFunc(G,flowSet,n_port,T,flownum,queueLength,hostNum,swNum)
print("Naive greedy-SucRate",sucRate_naive_greedy)
print ("Naive greedy-ExecuteTime",time_naive_greedy)
print("Naive greedy-ResourceUtilization",resUtiRate_naive_greedy)
print ("Naive greedy-ResourceVariance",variance_naive_greedy)
for flow in flowSet:
flow.schedFlag=0
flow.offset=100
#Alg-----naive
time_naive,sucRate_naive,resUtiRate_naive,variance_naive=naiveFunc(G,flowSet,n_port,T,flownum,queueLength,hostNum,swNum)
print("naive-SucRate",sucRate_naive)
print ("naive-ExecuteTime",time_naive)
print("naive-ResourceUtilization",resUtiRate_naive)
print ("naive-ResourceVariance",variance_naive)
for flow in flowSet:
flow.schedFlag=0
flow.offset=100
#Alg-----tabu
time_tabu,sucRate_tabu,schedSolu,resUtiRate_tabu,variance_tabu=tabuFunc(G,flowSet,n_port,T,flownum,queueLength,hostNum,swNum)
print("tabu-SucRate",sucRate_tabu)
print ("tabu-ExecuteTime",time_tabu)
print("tabu-ResourceUtilization",resUtiRate_tabu)
print ("tabu-ResourceVariance",variance_tabu)
for flow in flowSet:
flow.schedFlag=0
flow.offset=100
#Alg--PD
sucRate_pd,time_pd,resUtiRate_pd,variance_pd=divisibilityFunc(G,flowSet,n_port,T,flownum,queueLength,hostNum,swNum)
print("PD-SucRate",sucRate_pd)
print ("PD-ExecuteTime",time_pd)
print("PD-ResourceUtilization",resUtiRate_pd)
print ("PD-ResourceVariance",variance_pd)
#Avarage Statics
Suc1.append(sucRate_naive_greedy)
Suc2.append(sucRate_Enh)
#Suc3.append(sucRate_half_greedy)
Suc4.append(sucRate_naive)
Suc5.append(sucRate_tabu)
Suc6.append(sucRate_pd)
Time1.append(time_naive_greedy)
Time2.append(time_Enh)
#Time3.append(time_half_greedy)
Time4.append(time_naive)
Time5.append(time_tabu)
Time6.append(time_pd)
resUtiRate1.append(resUtiRate_naive_greedy)
resUtiRate2.append(resUtiRate_Enh)
#resUtiRate3.append(resUtiRate_half_greedy)
resUtiRate4.append(resUtiRate_naive)
resUtiRate5.append(resUtiRate_tabu)
resUtiRate6.append(resUtiRate_pd)
variance1.append(variance_naive_greedy)
variance2.append(variance_Enh)
#variance3.append(variance_half_greedy)
variance4.append(variance_naive)
variance5.append(variance_tabu)
variance6.append(variance_pd)
improve=sucRate_Enh-sucRate_naive_greedy
print("Improve",improve)
imp.append(improve)
aveImp=sum(imp)/len(imp)
aveSuc1=sum(Suc1)/len(Suc1)
aveSuc2=sum(Suc2)/len(Suc2)
#aveSuc3=sum(Suc3)/len(Suc3)
aveSuc4=sum(Suc4)/len(Suc4)
aveSuc5=sum(Suc5)/len(Suc5)
aveSuc6=sum(Suc6)/len(Suc6)
aveTime1=sum(Time1)/len(Time1)
aveTime2=sum(Time2)/len(Time2)
#aveTime3=sum(Time3)/len(Time3)
aveTime4=sum(Time4)/len(Time4)
aveTime5=sum(Time5)/len(Time5)
aveTime6=sum(Time6)/len(Time6)
aveResUti1=sum(resUtiRate1)/len(resUtiRate1)
aveResUti2=sum(resUtiRate2)/len(resUtiRate2)
#aveResUti3=sum(resUtiRate3)/len(resUtiRate3)
aveResUti4=sum(resUtiRate4)/len(resUtiRate4)
aveResUti5=sum(resUtiRate5)/len(resUtiRate5)
aveResUti6=sum(resUtiRate6)/len(resUtiRate6)
aveVari1=sum(variance1)/len(variance1)
aveVari2=sum(variance2)/len(variance2)
#aveVari3=sum(variance3)/len(variance3)
aveVari4=sum(variance4)/len(variance4)
aveVari5=sum(variance5)/len(variance5)
aveVari6=sum(variance6)/len(variance6)
print("NaiveGreedyAveSuc",aveSuc1)
print("MSSAveSuc",aveSuc2)
#print("alg3",aveSuc3)
print("NaiveAveSuc",aveSuc4)
print("tabuAveSuc",aveSuc5)
print("PDAveSuc",aveSuc6)
print("NaiveGreedyAveTime",aveTime1)
print("MSSAveTime",aveTime2)
#print("alg3",aveTime3)
print("NaiveAveTime",aveTime4)
print("tabuAveTime",aveTime5)
print("PDAveTime",aveTime6)
print("NaiveGreedyAveResUti",aveResUti1)
print("MSSAveResUti",aveResUti2)
#print("alg3",aveResUti3)
print("NaiveAveResUti",aveResUti4)
print("tabuAveResUti",aveResUti5)
print("PDAveResUti",aveResUti6)
print("NaiveGreedyAveResVar",aveVari1)
print("MSSAveResVar",aveVari2)
#print("alg3",aveVari3)
print("NaiveAveResVar",aveVari4)
print("tabuAveResVar",aveVari5)
print("PDAveResVar",aveVari6)
print("AveImp",aveImp)