-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathassignment_1_euclids.py
92 lines (75 loc) · 2.59 KB
/
assignment_1_euclids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Analysis of Algorithms
# Assignment 1
# Team members: Yevhen Voitiuk, Julia Maliauka, Michael Petracca
# Problem 1.9(c), Euclid's Extended Algorithm
import sys
import random
import numpy as np
import matplotlib.pyplot as plt
# Implementation of Euclid's Extended Algorithm
def get_euclids_extended(m, n):
a = 0
x = 1
b = 1
y = 0
c = m
d = n
iterations = 0
while(True):
q = int(c / d)
r = c % d
iterations += 1
if (r == 0):
return (int(d),int(a),int(b), int(iterations))
c = d
d = r
t = x
x = a
a = (t - (q * a))
t = y
y = b
b = (t - (q * b))
# solve for a and b - ripped from https://stackoverflow.com/questions/22239691/code-for-line-of-best-fit-of-a-scatter-plot-in-python
def best_fit(X, Y):
xbar = sum(X)/len(X)
ybar = sum(Y)/len(Y)
n = len(X) # or len(Y)
numer = sum([xi*yi for xi,yi in zip(X, Y)]) - n * xbar * ybar
denum = sum([xi**2 for xi in X]) - n * xbar**2
b = numer / denum
a = ybar - b * xbar
print('best fit line:\ny = {:.2f} + {:.2f}x'.format(a, b))
return a, b
def plotResults(xvals, yvals):
plt.title("Iterations as a function of encoding length for Euclid's Extended Algorithm")
plt.xlabel("Encoding length (in bits)")
plt.ylabel("Average iterations")
plt.scatter(xvals, yvals)
a, b = best_fit(xvals, yvals)
yfit = [a + b * xi for xi in xvals]
plt.plot(xvals, yfit)
plt.show()
# Function to run trials and get average runtime (in iterations)
def runEuclidsExtended(maxBitLength, runsPerLength):
lengths = []
results = []
avg = 0;
for bitlength in range(1, maxBitLength):
lengths.append(bitlength)
for i in range(0, runsPerLength):
smallNum = 0
bigNum = 0
while(smallNum <= 0): smallNum = random.getrandbits(bitlength)
while(bigNum <= 0): bigNum = random.getrandbits(maxBitLength + 50) # size is bounded by the smaller one, so guarantee the smaller one is smallNum
avg += get_euclids_extended(bigNum, smallNum)[3]
results.append(avg / runsPerLength)
plotResults(lengths, results)
bits = 0
trials = 0
while (bits <= 0): bits = int(input("Please input an integer greater than 0: "))
while (trials <= 0): trials = int(input("And just one more, please: "))
runEuclidsExtended(bits, trials)
# Make sure that the POST-CONDITION requirements were met
# Euclid's extended algorith, given integers m and n, should return (a,b):
# a*m + b*n = gcd(m, n)
# It should also return gcd(m, n)