-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathassignment_2_prims.py
227 lines (165 loc) · 5.98 KB
/
assignment_2_prims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Analysis of Algorithms
# Assignment 2: Prim's Algorithm
# Team members: Yevhen Voitiuk, Julia Maliauka, Michael Petracca
# Due October 24, 2018
import sys
import random
import math
HIGHEST_PRIORITY = 0
INFINITY = math.inf
# Initialize our graph using our edge weights
graph = [
[0, 9, 1, 0, 0],
[9, 0, 0, 4, 18],
[1, 0, 0, 3, 0],
[0, 4, 3, 0, 2],
[0, 18, 0, 2, 0],
]
edge_names = [
[0, "e1", "e2", 0, 0],
["e1", 0, 0, "e4", "e5"],
["e2", 0, 0, "e3", 0],
[0, "e4", "e3", 0, "e6"],
[0, "e5", 0, "e6", 0],
]
# Initialize V using all the vertices from the graph.
vertices = ["v1", "v2", "v3", "v4", "v5"]
# by definition of MCST:
required_number_of_edges = len(vertices) - 1
class vertex:
"Contains vertex and information about cheapest edges connected to it"
def __init__(self, vertex_number):
self.vertex_number = vertex_number
self.name = vertices[vertex_number]
self.key = INFINITY
def get_name(self):
return self.name
"get_key: returns the cost of the cheapest edge connected to this vertex"
def get_key(self):
return self.key
def set_key(self, value):
self.key = value
"get_adjacent_vertices: returns a list of all vertices connected to this one"
def get_adjacent_vertices(self):
adjacent_vertices = []
for index in range(len(vertices)):
if graph[self.vertex_number][index] != 0:
adjacent_vertices.append(index)
return adjacent_vertices
def get_adjacent_edges(self):
adjacent_edges = []
for index in range(len(vertices)):
if graph[self.vertex_number][index] != 0:
added_edge = Edge(
self.vertex_number, index, (graph[self.vertex_number][index])
)
adjacent_edges.append(added_edge)
return adjacent_edges
class Edge:
def __init__(self, vertex_1, vertex_2, edge_weight):
self.name = edge_names[vertex_1][vertex_2]
self.contents = (vertex_1, vertex_2)
self.edge_weight = edge_weight
class min_priority_queue:
"Contains information and methods for dealing with B, our heap structure"
def __init__(self, size_of_heap):
self.size = size_of_heap
self.contents = []
"pop: removes front edge at index 0 which is lowest cost, highest priority"
def pop_minimum(self):
popped_item = self.contents[0]
self.contents.remove(popped_item)
self.size = self.size - 1
return popped_item
"push: appends edges to B and then sorts all of them"
def push(self, edge):
self.contents.append(edge)
def print_edges(self):
for edge in self.contents:
print("[", edge.name, edge.edge_weight, "]", end=" ")
def heapsort(self):
heapSort(self.contents)
# heapify and heapsort directly copied from geeksforgeeks.com
def heapify(arr, n, i):
largest = i # Initialize largest as root
l = 2 * i + 1 # left = 2*i + 1
r = 2 * i + 2 # right = 2*i + 2
# See if left child of root exists and is
# greater than root
if l < n and arr[i].edge_weight < arr[l].edge_weight:
largest = l
# See if right child of root exists and is
# greater than root
if r < n and arr[largest].edge_weight < arr[r].edge_weight:
largest = r
# Change root, if needed
if largest != i:
arr[i], arr[largest] = arr[largest], arr[i] # swap
# Heapify the root.
heapify(arr, n, largest)
# The main function to sort an array of given size
def heapSort(arr):
n = len(arr)
# Build a maxheap.
for i in range(n, -1, -1):
heapify(arr, n, i)
# One by one extract elements
for i in range(n - 1, 0, -1):
arr[i], arr[0] = arr[0], arr[i] # swap
heapify(arr, i, 0)
class MCST:
def __init__(self):
self.contents = []
self.size = 0
def add_edge(self, edge):
self.contents.append(edge)
self.size = self.size + 1
def does_not_contain_vertex(self, vertex):
vertex_not_here = True
for index in range(len(self.contents)):
if vertices[self.contents[index].contents[1]] == vertices[vertex]:
vertex_not_here = False
return vertex_not_here
def does_not_contain_edge(self, edge_name):
edge_not_here = True
for index in range(len(self.contents)):
if self.contents[index].name == edge_name:
edge_not_here = False
return edge_not_here
def print_edges(self):
for edge in self.contents:
print("[", edge.name, edge.edge_weight, "]", end=" ")
def main():
# create a min heap of size V. let the min heap be B[]
B = min_priority_queue(len(vertices))
stage = 0
current_vertex = vertex(0)
element_in_T = -1
T = MCST()
print(
"Starting Prim's algorithm at arbitrary root",
vertices[current_vertex.vertex_number],
)
while T.size < required_number_of_edges and stage < 5:
# Find adjacent_vertices
adjacent_vertices = current_vertex.get_adjacent_edges()
# push adjacent edges of current_vertex to B and SORT
for edge in adjacent_vertices:
# only add the edge to B if it is not already in our MCST
if T.does_not_contain_vertex(edge.contents[1]) and T.does_not_contain_edge(edge.name):
B.push(edge)
# SORT B
B.heapsort()
# pop top edge (cheapest) of B to T if T does not already contain e(i)
T.add_edge(B.pop_minimum())
print("\n[ STAGE", stage, "]")
print("Currently looking at vertex", vertices[current_vertex.vertex_number])
print("\nB = ")
B.print_edges()
print("\n\nT: ")
T.print_edges()
print("\n_________________________________________")
stage = stage + 1
# set new current_vertex to T[]'s last element's tail
current_vertex = vertex(T.contents[element_in_T].contents[1])
main()