-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverbnetsrl.py
295 lines (244 loc) · 10 KB
/
verbnetsrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# MIT License
#
# Copyright (c) [2018] [Gang Ling ([email protected]),
# Yuliya Lierler ([email protected])]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# no arg: none
# have arg but no mapping: PropBank: arg
import xml.etree.ElementTree as ET
# parse vb-pb mapping file into a element tree
pb_tree = ET.parse('semLink/vn-pb/vnpbMappings')
m_dct_lst = list()
def bias_pbTovb_mapping():
bias_verbClass = {'go.01': '51.1',
'move.01': '51.3.1'}
return bias_verbClass
# process lth outputs into a list of dictionary
# each sentence in the original input file is a dictionary
def read_data(lth_output):
data_lst = list()
for line in lth_output:
sub_line = line.split('\t')
# ingore empty line in the lth output
if len(sub_line) < 2:
continue
else:
data_lst.append(sub_line)
form_dct(data_lst)
return m_dct_lst
# A method to form each sentence's data into a dictionary
def form_dct(lst):
# make sure master dictionary list is empty
# if not, clean it's memory data
if len(m_dct_lst) > 0:
del m_dct_lst[:]
sub_dct_lst = list()
# lst is a list of lists
sentences_lst = form_sentence(lst)
for sentence in sentences_lst:
pred_lst = list()
for item in sentence:
if item[10] != '_':
pred_lst.append(item[10])
for item in sentence:
item_dct = dict()
item_dct['ID'] = item[0]
item_dct['Form'] = item[1]
item_dct['PLemma'] = item[2]
item_dct['PPOS'] = item[4]
item_dct['PHead'] = item[8]
item_dct['PDeprel'] = item[9]
item_dct['Pred'] = item[10]
args_len = len(pred_lst)
idx = 11
for pred in pred_lst:
if idx == 10 + args_len:
item_dct['Args:' + pred] = item[idx].split('\n')[0]
else:
item_dct['Args:' + pred] = item[idx]
idx += 1
sub_dct_lst.append(item_dct)
m_dct_lst.append(sub_dct_lst)
sub_dct_lst = list()
# pre_check_args(m_dct_lst)
pre_check_args2(m_dct_lst)
deep_process(m_dct_lst)
# check_themeroles(m_dct_lst)
remove_not_vbclass(m_dct_lst)
# a method to organize sentences items into a list
def form_sentence(sentences):
sentences_lst = list()
sentence = list()
for item in sentences:
if item[0] == '1' and len(sentence) > 1:
sentences_lst.append(sentence)
sentence = list()
sentence.append(item)
elif item[0] == '1' and len(sentence) == 0:
sentence.append(item)
else:
sentence.append(item)
sentences_lst.append(sentence)
return sentences_lst
def pre_check_args2(dct_lst):
noun_lst = ['NNP', 'NN', 'PRP', 'NNS']
preposition = ['IN', 'TO']
# verb_pos = ['VBD', 'VB', 'VBN', 'VBG', 'VBP']
for sentence in dct_lst:
pred_lst = get_predicates(sentence)
for pred in pred_lst:
reassign_lst = list()
for entry in sentence:
if entry.get('PPOS') in preposition and entry.get('Args:' + pred) != '_':
t = (entry.get('ID'), entry.get('PHead'), entry.get('Args:' + pred))
reassign_lst.append(t)
entry.update({'Args:' + pred: '_'})
for role in reassign_lst:
for entry in sentence:
if entry.get('PPOS') in noun_lst and entry.get('Args:' + pred) == '_':
if int(entry.get('ID')) > int(role[0]) and int(entry.get('PHead')) > int(role[1]):
entry.update({'Args:' + pred: role[2]})
# deprecated
# def pre_check_args(dct_lst):
# noun_lst = ['NNP', 'NN', 'PRP', 'NNS']
# preposition = ['IN', 'TO']
# for sentence in dct_lst:
# pred_lst = get_predicates(sentence)
# for pred in pred_lst:
# args_count = count_args(sentence, pred)
# for entry in sentence:
# if entry.get('PPOS') in noun_lst:
# if args_count > 0:
# args_count -= 1
# else:
# entry['Args:' + pred] = 'NONE-ARGS'
#
# temp = list()
# for entry in sentence:
# if entry.get('PPOS') in preposition and entry.get('Args:' + pred) != '_':
# temp.append(entry.get('Args:' + pred))
# entry.update({'Args:' + pred : '_'})
#
# for entry in sentence:
# if entry.get('PPOS') in noun_lst and entry.get('Args:' + pred) == '_' and len(temp) > 0:
# entry.update({'Args:' + pred : temp[0]})
# del temp[0]
def count_args(sentence, pred):
count = 0
for entry in sentence:
if entry.get('Args:' + pred) != '_':
count += 1
return count
def get_predicates(sentence):
predicates = list()
for entry in sentence:
if entry.get('Pred') != '_':
predicates.append(entry.get('Pred'))
return predicates
# A method to process a list of dictionary and add vn-pb's values
def deep_process(dct_lst):
verb_pos = ['VBD', 'VB', 'VBN', 'VBG', 'VBP']
for sentence in dct_lst:
pred_lst = get_predicates(sentence)
for pred in pred_lst:
vn_themeroles = get_themeroles(sentence, pred, verb_pos)
vn_class = list(vn_themeroles.keys())
if len(vn_class) > 0:
for entry in sentence:
if entry.get('Pred') == pred:
entry[pred + ':vb-class'] = vn_class
elif entry.get('Args:' + pred) != '_':
roles = list()
for vc in vn_class:
for rd in vn_themeroles.get(vc):
r_num = entry.get('Args:' + pred)[1:]
if r_num in list(rd.keys()):
roles.append([vc, rd.get(r_num)])
break
if len(roles) == 0:
roles.append([vc, 'NONE-THEMEROLE'])
entry[pred + ':vn-class'] = roles
else:
entry[pred + ':vn-class'] = ['_']
def get_themeroles(sentence, pred, verb_pos):
vn_themeroles = dict()
for entry in sentence:
if entry.get('Pred') == pred and entry.get('PPOS') in verb_pos:
plemma = entry.get('PLemma')
vn_themeroles = vn_pb_parser(pred, plemma)
break
return vn_themeroles
def check_themeroles(dct_lst):
for sentence in dct_lst:
predicates = get_predicates(sentence)
for pred in predicates:
for entry in sentence:
if entry.get('Args:' + pred) != '_' and len(entry.get(pred + ':vn-class')) == 0:
entry[pred + ':vn-class'] = ['NON-THEMEROLE']
def remove_not_vbclass(dct_lst):
verb_pos = ['VBD', 'VB', 'VBN', 'VBG', 'VBP']
for sentence in dct_lst:
predicates = get_predicates(sentence)
remove_lst = list()
for entry in sentence:
pred = entry.get('Pred')
if pred in predicates and entry.get('PPOS') not in verb_pos:
remove_lst.append(pred)
entry.update({'Pred':'_'})
for p in remove_lst:
for entry in sentence:
del entry['Args:' + p]
# A method to check and tagging Args data
# If the Args's number is in the pb-roleset number list, return True, else return False
def pb_args_checker(num, sentence_lst):
num_lst = list()
for sub_dct in sentence_lst:
if sub_dct.get('Args') != '_':
num_lst.append(sub_dct.get('Args')[1:])
if num in num_lst:
return True
else:
return False
# A method to retrieve vn class data and args role data from vn-pb element tree
# using pred and plemma to located pb parent node in the tree,
# retrieve vn-class data and pb-roleset data from parent node to children node
def vn_pb_parser(pred, plemma):
# bias_verbClass_mapping = bias_pbTovb_mapping()
# bias_key_lst = list(bias_verbClass_mapping.keys())
dct = dict()
root = pb_tree.getroot()
for elem in root.findall('./predicate'):
if elem.attrib.get('lemma') == plemma:
for argmap in elem:
if argmap.attrib.get('pb-roleset') == pred:
lst = list()
for role in argmap:
sub_dct2 = dict()
sub_dct2[role.attrib.get('pb-arg')] = role.attrib.get('vn-theta')
lst.append(sub_dct2)
dct[argmap.attrib.get('vn-class')] = lst
if len(dct.keys()) == 0:
dct['NOT-FOUND-IN-SEMLINK'] = list()
# if pred in bias_key_lst:
# vbClass = bias_verbClass_mapping.get(pred)
# remove = [k for k in dct if k != vbClass]
# for k in remove:
# del dct[k]
return dct