-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_exposure_bias.py
205 lines (160 loc) · 7.57 KB
/
evaluate_exposure_bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from data_utils.prompt_datasets import PromptDataset
from transformers import (
GenerationConfig,
AutoModelForCausalLM,
mpu,
AutoConfig,)
import os
import random
import nltk
nltk.download("punkt")
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import DataLoader, DistributedSampler
from tqdm import tqdm
from utils import print_rank, save_rank, load_parallel, parallel_model_map
from peft import PeftModel
torch.set_num_threads(4)
def prepare_dataset_eb(args, tokenizer):
data = {}
rng = random.Random(args.seed_ppo)
data["test"] = PromptDataset(args, tokenizer, "valid", args.data_dir, args.dev_num)
return data
def get_inputs(args, full_ids, tokenizer):
attention_mask = (full_ids != tokenizer.pad_token_id)
model_inputs = {
"input_ids": full_ids,
"attention_mask": attention_mask,
"use_cache": False
}
if args.model_type in ["gpt2"]:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(~attention_mask, 0)
model_inputs["position_ids"] = position_ids
return model_inputs
def calc_batch(args, tokenizer, generation_config, model, teacher_model, model_batch, gen_model_type="base", st_change=False):
query_ids = model_batch["input_ids"]
max_new_tokens = args.max_length - query_ids.size(1)
batch_err = []
batch_masks = []
if gen_model_type == "base":
gen_model = model
if st_change and args.teacher_peft_path is not None:
max_new_tokens = max_new_tokens - args.prompt_len
else:
gen_model = teacher_model
if not st_change and args.teacher_peft_path is not None:
max_new_tokens = max_new_tokens - args.prompt_len
for _ in range(args.eb_sample_times):
gen_out = gen_model.generate(
**model_batch,
generation_config=generation_config,
min_length=None,
max_new_tokens=max_new_tokens
)
full_ids = gen_out.sequences
full_ids = F.pad(
full_ids,
(0, args.max_length - full_ids.shape[1]),
value=tokenizer.pad_token_id,
)
# response_ids = full_ids[:, query_ids.size(1):] # remove prompt (may include start token)
inputs = get_inputs(args, full_ids, tokenizer)
output = model(**inputs)
logits = output.logits
teacher_output = teacher_model(**inputs)
teacher_logits = teacher_output.logits
if args.teacher_peft_path is not None:
if st_change:
logits = logits[:, query_ids.size(1)+args.prompt_len:, :]
teacher_logits = teacher_logits[:, query_ids.size(1):, :]
masks = inputs["attention_mask"][:, query_ids.size(1):]
else:
logits = logits[:, query_ids.size(1):, :]
teacher_logits = teacher_logits[:, query_ids.size(1)+args.prompt_len:, :]
masks = inputs["attention_mask"][:, query_ids.size(1):]
else:
logits = logits[:, query_ids.size(1):, :]
teacher_logits = teacher_logits[:, query_ids.size(1):, :]
masks = inputs["attention_mask"][:, query_ids.size(1):]
logprobs = F.log_softmax(logits, dim=-1)
teacher_logprobs = F.log_softmax(teacher_logits, dim=-1)
teacher_probs = torch.exp(teacher_logprobs)
err1 = torch.sum(teacher_probs * (teacher_logprobs - logprobs), dim=-1)
err1 = err1 * masks
batch_err.append(err1)
batch_masks.append(masks)
batch_masks = torch.stack(batch_masks, dim=1)
batch_err = torch.stack(batch_err, dim=1)
mean_batch_err = torch.sum(batch_err, dim=1) / (torch.sum(batch_masks, dim=1) + 1e-3)
mean_batch_err = torch.cumsum(mean_batch_err, dim=-1)
return mean_batch_err
def evaluate(args, tokenizer, model, teacher_model, dataset: PromptDataset, epoch, device, st_change=False):
collate_fn = dataset.collate
if args.model_parallel:
dp_world_size = mpu.get_data_parallel_world_size()
dp_rank = mpu.get_data_parallel_rank()
else:
dp_world_size = dist.get_world_size()
dp_rank = dist.get_rank()
sampler = DistributedSampler(dataset, shuffle=False, drop_last=False, rank=dp_rank, num_replicas=dp_world_size)
dataloader = DataLoader(
dataset, sampler=sampler, batch_size=args.eval_batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
model.eval()
generation_config = GenerationConfig(
do_sample=args.do_sample,
top_p=args.top_p,
top_k=args.top_k,
temperature=args.temperature,
no_repeat_ngram_size=args.no_repeat_ngram_size,
repetition_penalty=args.repetition_penalty,
max_length=args.max_length,
min_length=None,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
return_dict_in_generate=True,
output_scores=True
)
all_R = []
all_eps = []
with torch.no_grad():
for it, (model_batch, no_model_batch) in enumerate(tqdm(dataloader, desc=f"Evaluating {args.data_names} ", disable=(dist.get_rank() != 0))):
dataset.move_to_device(model_batch, no_model_batch, device)
mean_batch_R = calc_batch(args, tokenizer, generation_config, model, teacher_model, model_batch, gen_model_type="base", st_change=st_change)
mean_batch_eps = calc_batch(args, tokenizer, generation_config, model, teacher_model, model_batch, gen_model_type="teacher", st_change=st_change)
all_R.append(mean_batch_R)
all_eps.append(mean_batch_eps)
all_R = torch.cat(all_R, dim=0)
mean_R = torch.mean(all_R, dim=0)
std_R = torch.std(all_R, dim=0)
all_eps = torch.cat(all_eps, dim=0)
mean_eps = torch.mean(all_eps, dim=0)
std_eps = torch.std(all_eps, dim=0)
ex_acc_err = (mean_R - mean_eps) / mean_eps * 100
std_err = (torch.abs(std_R / mean_R) + torch.abs(std_eps / std_eps)) * ex_acc_err
return ex_acc_err, mean_R, mean_eps, std_err, std_R, std_eps
def get_teacher_model(args, device):
if args.model_parallel:
config = AutoConfig.from_pretrained(args.teacher_model_path)
model = parallel_model_map[args.model_type](config)
load_parallel(model, args.teacher_model_path)
model = model.to(device)
model.eval()
else:
model = AutoModelForCausalLM.from_pretrained(args.teacher_model_path).to(device)
if args.teacher_model_fp16:
model = model.half()
if args.teacher_peft_path is not None:
model = PeftModel.from_pretrained(model, args.teacher_peft_path)
return model
def evaluate_eb(args, tokenizer, model, dataset: PromptDataset, split, epoch, device, st_change=False):
teacher_model = get_teacher_model(args, device)
if st_change:
ex_acc_err, mean_R, mean_eps, std_err, std_R, std_eps = evaluate(args, tokenizer, teacher_model, model, dataset, epoch, device, st_change=True)
else:
ex_acc_err, mean_R, mean_eps, std_err, std_R, std_eps = evaluate(args, tokenizer, model, teacher_model, dataset, epoch, device)
torch.save((ex_acc_err, mean_R, mean_eps, std_R, std_eps), os.path.join(args.save, "res.pt"))
log_str = f"{split} | name: {args.data_names} | ExAccErr: {ex_acc_err[15]} | R: {mean_R[15]} | eps: {mean_eps[15]} | std_err: {std_err[15]} | std_R: {std_R[15]} | std_eps: {std_eps[15]}"
print_rank(log_str)
save_rank(log_str, os.path.join(args.save, "log.txt"))