-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
403 lines (325 loc) · 11.4 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import Settings
from Settings import *
# Size of sectors used to ease block loading.
SECTOR_SIZE = 16
# Number of ticks per second
TICKS_PER_SEC = 60
TEXTURE_PATH = 'texture.png'
def cube_vertices(x, y, z, n):
""" Return the vertices of the cube at position x, y, z with size 2*n.
Probably the most shameful way to write this out. There is a way to do
it algorithmically. Tip: Find a fast way to count binary and then
substitute digits for operations. Is it necessary? Does it improve the
way the code is written? I'm not really sure.
"""
return [
x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
]
if sys.version_info[0] >= 3:
xrange = range
def tex_coord(x, y, n=4):
""" Return the bounding vertices of the texture square.
"""
m = 1.0 / n
dx = x * m
dy = y * m
return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
def tex_coords(top, bottom, side):
""" Return a list of the texture squares for the top, bottom and side.
"""
top = tex_coord(*top)
bottom = tex_coord(*bottom)
side = tex_coord(*side)
result = []
result.extend(top)
result.extend(bottom)
result.extend(side * 4)
return result
def normalize(position):
""" Accepts `position` of arbitrary precision and returns the block
containing that position.
Parameters
----------
position : tuple of len 3
Returns
-------
block_position : tuple of ints of len 3
"""
x, y, z = position
x, y, z = (int(round(x)), int(round(y)), int(round(z)))
return (x, y, z)
def sectorize(position):
""" Returns a tuple representing the sector for the given `position`.
Parameters
----------
position : tuple of len 3
Returns
-------
sector : tuple of len 3
"""
x, y, z = normalize(position)
x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
return (x, 0, z)
########Get Vectors############
def get_sight_vector(self):
""" Returns the current line of sight vector indicating the direction
the player is looking.
"""
x, y = self.rotation
# y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
# is 1 when looking ahead parallel to the ground and 0 when looking
# straight up or down.
m = math.cos(math.radians(y))
# dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
# looking straight up.
dy = math.sin(math.radians(y))
dx = math.cos(math.radians(x - 90)) * m
dz = math.sin(math.radians(x - 90)) * m
return (dx, dy, dz)
def get_motion_vector(self):
""" Returns the player's velocity vector
Returns
-------
vector : tuple of len 3
Tuple containing the velocity in x, y, and z respectively.
"""
if any (self.strafe):
x, y = self.rotation
strafe = math.degrees(math.atan2(*self.strafe))
y_angle = math.radians(y)
x_angle = math.radians(x + strafe)
if self.flying:
m = math.cos(y_angle)
dy = math.sin(y_angle)
if self.strafe[1]:
# Moving left or right.
dy = 0.0
m = 1
if self.strafe[0] > 0:
# Moving backwards.
dy *= -1
# When you are flying up or down, you have less left and right
# motion.
dx = math.cos(x_angle) * m
dz = math.sin(x_angle) * m
else:
dy = 0.0
dx = math.cos(x_angle)
dz = math.sin(x_angle)
else:
dy = 0.0
dx = 0.0
dz = 0.0
return (dx, dy, dz)
###############################
##Graphics helper Functions
def draw_rect(x, y, width, height):
pyglet.graphics.draw (4, pyglet.gl.GL_QUADS,
('v2f', [x, y, x + width, y, x + width, y + height, x, y + height]))
###############################
##Procedural ProceduralGeneration #thanks to Paul Panzer and tgirod from stackoverflow.com
def perlin (x, y, seed=0):
# permutation table
np.random.seed(seed)
p = np.arange(256,dtype=int)
np.random.shuffle(p)
p = np.stack([p,p]).flatten()
# coordinates of the top-left
xi = x.astype(int)
yi = y.astype(int)
# internal coordinates
xf = x - xi
yf = y - yi
# fade factors
u = fade(xf)
v = fade(yf)
# noise components
n00 = gradient(p[p[xi]+yi],xf,yf)
n01 = gradient(p[p[xi]+yi+1],xf,yf-1)
n11 = gradient(p[p[xi+1]+yi+1],xf-1,yf-1)
n10 = gradient(p[p[xi+1]+yi],xf-1,yf)
# combine noises
x1 = lerp(n00,n10,u)
x2 = lerp(n01,n11,u) # FIX1: I was using n10 instead of n01
return lerp(x1,x2,v) # FIX2: I also had to reverse x1 and x2 here
def lerp(a,b,x):
"linear interpolation"
return a + x * (b-a)
def fade(t):
"6t^5 - 15t^4 + 10t^3"
return 6 * t**5 - 15 * t**4 + 10 * t**3
def gradient(h,x,y):
"grad converts h to the right gradient vector and return the dot product with (x,y)"
vectors = np.array([[0,1],[0,-1],[1,0],[-1,0]])
g = vectors[h%4]
return g[:,:,0] * x + g[:,:,1] * y
###############################
##Vector maths
class Vector:
x = 0
y = 0
z = 0
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __add__(self, other):
return Vector (self.x + other.x, self.y + other.y, self.z + other.z)
def __mul__(self, value):
return Vector (self.x * value, self.y * value, self.z * value)
def __str__(self):
print("X: " + self.x)
print("Y: " + self.y)
print("Z: " + self.z)
def getArray(self):
return [self.x, self.y, self.z]
def CrossProduct (vector1, vector2):
crossed_vector = numpy.cross ([vector1.x, vector1.y, vector1.z],[vector2.x, vector2.y, vector2.z])
return Vector (crossed_vector[0], crossed_vector[1], crossed_vector[2])
def getForwardVector (yaw, pitch):
forward_vector = Vector (math.sin (math.radians (yaw)) * math.cos (math.radians (pitch)),
math.sin (math.radians (pitch)),
math.cos (math.radians (yaw)) * math.cos (math.radians (pitch)))
return forward_vector
def transform_to_player_view (vertex, dx, dy):
#This is unfinished
return vertex
import numpy as np
#This has been copied.... no plagiarism. it seems?
# RPY/Euler angles to Rotation Vector
def euler_to_rotVec(yaw, pitch, roll):
# compute the rotation matrix
Rmat = euler_to_rotMat(yaw, pitch, roll)
theta = math.acos(((Rmat[0, 0] + Rmat[1, 1] + Rmat[2, 2]) - 1) / 2)
sin_theta = math.sin(theta)
if sin_theta == 0:
rx, ry, rz = 0.0, 0.0, 0.0
else:
multi = 1 / (2 * math.sin(theta))
rx = multi * (Rmat[2, 1] - Rmat[1, 2]) * theta
ry = multi * (Rmat[0, 2] - Rmat[2, 0]) * theta
rz = multi * (Rmat[1, 0] - Rmat[0, 1]) * theta
return rx, ry, rz
def euler_to_rotMat (yaw, pitch, roll):
Rz_yaw = np.array([
[np.cos(yaw), -np.sin(yaw), 0],
[np.sin(yaw), np.cos(yaw), 0],
[ 0, 0, 1]])
Ry_pitch = np.array([
[ np.cos(pitch), 0, np.sin(pitch)],
[ 0, 1, 0],
[-np.sin(pitch), 0, np.cos(pitch)]])
Rx_roll = np.array([
[1, 0, 0],
[0, np.cos(roll), -np.sin(roll)],
[0, np.sin(roll), np.cos(roll)]])
# R = RzRyRx
rotMat = np.dot(Rz_yaw, np.dot(Ry_pitch, Rx_roll))
return rotMat
def getCenterOfVertices (v, num_vertices):
x = []
y = []
z = []
for index in range (0, int (num_vertices/3)):
x.append (v.vertices[index * 3])
y.append (v.vertices[index * 3 + 1])
z.append (v.vertices[index * 3 + 2])
center = (max(x)+min(x))/2., (max(y)+min(y))/2., (max(z)+min(z))/2.
return center
def rotatePoint (pos_vector, rot_vector, center):
""" An unnecessary amount of fuckery went into sorting this out """
vX = pos_vector[0] - center[0]
vY = pos_vector[1] - center[1]
vZ = pos_vector[2] - center[2]
rX = math.radians (rot_vector[0])
rY = math.radians (rot_vector[1])
rZ = math.radians (rot_vector[2])
#vX,vY,vZ is the vector coords
#rx,rY,rZ is the rotation angles in radians
#Xrotation
xX = vX
xY = vY * math.cos (rX) - vZ * math.sin (rX)
xZ = vY * math.sin (rX) + vZ * math.cos (rX)
#Yrotation
yX = xZ * math.sin (rY) + xX * math.cos (rY)
yY = xY
yZ = xZ * math.cos (rY) - xX * math.sin (rY)
#Zrotation
zX = yX * math.cos (rZ) - yY * math.sin (rZ)
zY = yX * math.sin (rZ) + yY * math.cos (rZ)
zZ = yZ
return (zX + center[0], zY + center[1], zZ + center[2])
def rotatePointRadians (pos_vector, rot_vector, center):
""" An unnecessary amount of fuckery went into sorting this out """
vX = pos_vector[0] - center[0]
vY = pos_vector[1] - center[1]
vZ = pos_vector[2] - center[2]
rX = (rot_vector[0])
rY = (rot_vector[1])
rZ = (rot_vector[2])
#vX,vY,vZ is the vector coords
#rx,rY,rZ is the rotation angles in radians
#Xrotation
xX = vX
xY = vY * math.cos (rX) - vZ * math.sin (rX)
xZ = vY * math.sin (rX) + vZ * math.cos (rX)
#Yrotation
yX = xZ * math.sin (rY) + xX * math.cos (rY)
yY = xY
yZ = xZ * math.cos (rY) - xX * math.sin (rY)
#Zrotation
zX = yX * math.cos (rZ) - yY * math.sin (rZ)
zY = yX * math.sin (rZ) + yY * math.cos (rZ)
zZ = yZ
return (zX + center[0], zY + center[1], zZ + center[2])
def rotatePointWithOffset (pos_vector, rot_vector, center, rot_offset):
""" An unnecessary amount of fuckery went into sorting this out """
vX = pos_vector[0] - center[0]
vY = pos_vector[1] - center[1]
vZ = pos_vector[2] - center[2]
rX = math.radians (rot_vector[0]) + math.radians (rot_offset[0])
rY = math.radians (rot_vector[1]) + math.radians (rot_offset[1])
rZ = math.radians (rot_vector[2]) + math.radians (rot_offset[2])
print ("rX:" + str (math.degrees(rX)))
print ("rY:" + str (math.degrees(rY)))
print ("rZ:" + str (math.degrees(rZ)))
#vX,vY,vZ is the vector coords
#rx,rY,rZ is the rotation angles in radians
#Xrotation
xX = vX
xY = vY * math.cos (rX) - vZ * math.sin (rX)
xZ = vY * math.sin (rX) + vZ * math.cos (rX)
#Yrotation
yX = xZ * math.sin (rY) + xX * math.cos (rY)
yY = xY
yZ = xZ * math.cos (rY) - xX * math.sin (rY)
#Zrotation
zX = yX * math.cos (rZ) - yY * math.sin (rZ)
zY = yX * math.sin (rZ) + yY * math.cos (rZ)
zZ = yZ
return (zX + center[0], zY + center[1], zZ + center[2])
###############################
#Object parameters here
GRASS = tex_coords ((1, 0), (0, 1), (0, 0))
DIRT = tex_coords ((0, 1), (0, 1), (0, 1))
SAND = tex_coords ((1, 1), (1, 1), (1, 1))
BRICK = tex_coords ((2, 0), (2, 0), (2, 0))
STONE = tex_coords ((2, 1), (2, 1), (2, 1))
JAIL = tex_coords ((3, 0), (3, 0), (3, 0))
ICE = tex_coords ((3, 2), (3, 2), (3, 2))
GLASS = tex_coords ((3, 1), (3, 1), (3, 1))
MUD = tex_coords ((2, 2), (2, 2), (2, 2))
EVIL_BLOCK = tex_coords ((3, 0), (3, 0), (3, 0))
FACES = [
( 0, 1, 0),
( 0,-1, 0),
(-1, 0, 0),
( 1, 0, 0),
( 0, 0, 1),
( 0, 0,-1),
]