-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_loader.py
118 lines (86 loc) · 3.19 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import numpy as np
from glob import glob
from PIL import Image
import torch
from torchvision.transforms import Compose, ToTensor, Resize
from tifffile import imread
def readData(root, train=True):
data = []
if train:
dir = os.path.join(root, 'train')
else:
dir = os.path.join(root, 'test')
imagefNames = os.listdir(os.path.join(dir,'sampleimages'))
for imgfName in imagefNames:
data.append([os.path.join(os.path.join(dir, 'sampleimages'),imgfName),
os.path.join(os.path.join(dir, 'samplemasks'), imgfName.replace('volume', 'segmentation'))])
return data
MIN_BOUND = -100.0
MAX_BOUND = 400.0
PIXEL_MEAN = 0.1021
PIXEL_STD = 0.19177
def setBounds(image,MIN_BOUND,MAX_BOUND):
"""
Clip image to lower bound MIN_BOUND, upper bound MAX_BOUND.
"""
return np.clip(image,MIN_BOUND,MAX_BOUND)
def normalize(image):
"""
Perform standardization/normalization, i.e. zero_centering and setting
the data to unit variance.
"""
image = setBounds(image,MIN_BOUND,MAX_BOUND)
image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND)
# image = np.clip(image, 0., 1.)
# image = image - PIXEL_MEAN
# image = image/PIXEL_STD
return image
def splitChannels(gt):
c0 = np.copy(gt)
c1 = np.copy(gt)
c0[c0 == 2] = 0 # np.unique(c0) = [0, 1]
c1[c1 == 1] = 0 # np.unique(c1) = [0, 2]
c1[c1 == 2] = 1 # np.unique(c1) = [0, 1]
return c0, c1
class LITS(torch.utils.data.Dataset):
def __init__(self, root, size=(512, 512), transform=None, train=True):
self.train = train
self.root = root
self.size = size
if not os.path.exists(self.root):
raise Exception("[!] The directory {} does not exist.".format(root))
if (transform==None):
self.transform = Compose([
Resize(self.size),
ToTensor(),
])
else:
self.transform = transform
self.paths = readData(root, self.train)
def __getitem__(self, index):
self.imagePath, self.maskPath = self.paths[index]
image = imread(self.imagePath)
gt = imread(self.maskPath)
image = normalize(image)
targetL, targetT = splitChannels(gt)
try:
image = self.transform(Image.fromarray(image))
gt = self.transform(Image.fromarray(gt))
targetL = self.transform(Image.fromarray(targetL))
targetT = self.transform(Image.fromarray(targetT))
except:
print("[!] Transform is invalid.")
image = np.asanyarray(image)
mask = np.vstack((np.asarray(targetL), np.asarray(targetT)))
gt = np.asarray(gt)
return image, mask, gt
def __len__(self):
return len(self.paths)
def loader(dataset, batch_size, num_workers=8, shuffle=True):
input_images = dataset
input_loader = torch.utils.data.DataLoader(dataset=input_images,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers)
return input_loader