-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
290 lines (232 loc) · 9.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from __future__ import print_function
import os
import numpy as np
from PIL import Image
import torch
from torch.utils import data
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch import nn
import torchvision.utils as vutils
from torch.autograd import Variable
import torch.nn.functional as F
from tqdm import tqdm
from net import NetS, NetC
from data_loader import LITS, loader
import warnings
warnings.filterwarnings("ignore")
# Training settings
batchSize = 128 # training batch size
size = 128 # square image size
niter = 100 #number of epochs to train for
lr = 0.0002 #Learning Rate. Default=0.0002
ngpu = 1 #number of GPUs to use, for now it only supports one GPU
beta1 = 0.5 #beta1 for adam
decay = 0.5 #Learning rate decay
cuda = True #using GPU or not
seed = 666 #random seed to use
outpath = './outputs' #folder to output images and model checkpoint
alpha = 0.1 #weight given to dice loss while generator training
try:
os.makedirs(outpath)
except OSError:
pass
# custom weights initialization called on NetS and NetC
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def dice_loss(input,target):
assert input.size() == target.size(), "Input sizes must be equal."
assert input.dim() == 4, "Input must be a 4D Tensor."
num = input*target
num = torch.sum(num,dim=3)
num = torch.sum(num,dim=2)
den1 = input*input
den1 = torch.sum(den1,dim=3)
den1 = torch.sum(den1,dim=2)
den2 = target*target
den2 = torch.sum(den2,dim=3)
den2 = torch.sum(den2,dim=2)
dice = 2*(num/(den1+den2))
dice_total = 1 - torch.sum(dice)/dice.size(0) #divide by batchsize
return dice_total
def mergeChannels(array, size):
c0 = array[:,0,:,:].reshape(-1, 1, size, size)
c1 = array[:,1,:,:].reshape(-1, 1, size, size)
c0[c0>=0.5] = 1
c0[c0<0.5] = 0
c1[c1>=0.5] = 2
c1[c1<0.5] = 0
array = np.hstack((c0, c1))
array = np.amax(array, axis=1)
return array.reshape(-1, 1, size, size)
if cuda and not torch.cuda.is_available():
raise Exception(' [!] No GPU found, please run without cuda.')
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
cudnn.benchmark = True
print('===> Building model')
NetS = NetS(ngpu = ngpu)
# NetS.apply(weights_init)
print('\n########## SEGMENTOR ##########\n')
print(NetS)
print()
NetC = NetC(ngpu = ngpu)
# NetC.apply(weights_init)
print('\n########## CRITIC ##########\n')
print(NetC)
print()
if cuda:
NetS = NetS.cuda()
NetC = NetC.cuda()
# criterion = criterion.cuda()
# setup optimizer
optimizerG = optim.Adam(NetS.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(NetC.parameters(), lr=lr, betas=(beta1, 0.999))
# load training data
dataloader = loader(LITS('preprocessed', (size, size), train=True), batchSize)
# load testing data
dataloader_val = loader(LITS('preprocessed', (size, size), train=False), batchSize)
print('===> Starting training\n')
max_iou = 0
NetS.train()
for epoch in range(1, niter+1):
for i, data in tqdm(enumerate(dataloader, 1)):
##################################
### train Discriminator/Critic ###
##################################
NetC.zero_grad()
image, target, gt = Variable(data[0]), Variable(data[1]), Variable(data[2])
if cuda:
image = image.float().cuda()
target = target.float().cuda()
output = NetS(image)
output = F.sigmoid(output)
output = output.detach() ### detach G from the network
input_mask = image.clone()
output_masked = image.clone()
output_masked = input_mask * output
if cuda:
output_masked = output_masked.cuda()
target_masked = image.clone()
target_masked = input_mask * target
if cuda:
target_masked = target_masked.cuda()
output_D = NetC(output_masked)
target_D = NetC(target_masked)
loss_D = 1 - torch.mean(torch.abs(output_D - target_D))
loss_D.backward()
optimizerD.step()
### clip parameters in D
for p in NetC.parameters():
p.data.clamp_(-0.05, 0.05)
#################################
### train Generator/Segmentor ###
#################################
NetS.zero_grad()
output = NetS(image)
output = F.sigmoid(output)
loss_dice = dice_loss(output,target)
output_masked = input_mask * output
if cuda:
output_masked = output_masked.cuda()
target_masked = input_mask * target
if cuda:
target_masked = target_masked.cuda()
output_G = NetC(output_masked)
target_G = NetC(target_masked)
loss_G = torch.mean(torch.abs(output_G - target_G))
loss_G_joint = loss_G + alpha * loss_dice
loss_G_joint.backward()
optimizerG.step()
if(i % 10 == 0):
print("\nEpoch[{}/{}]\tBatch({}/{}):\tBatch Dice_Loss: {:.4f}\tG_Loss: {:.4f}\tD_Loss: {:.4f} \n".format(
epoch, niter, i, len(dataloader), loss_dice.item(), loss_G.item(), loss_D.item()))
# saving visualizations after each epoch to monitor model's progress
outputC0 = output[:,0,:,:].view(-1, 1, size, size)
vutils.save_image(outputC0,
'{}/epoch-{}-liver-output.png'.format(outpath, epoch),
normalize=True)
outputC1 = output[:,1,:,:].view(-1, 1, size, size)
vutils.save_image(outputC1,
'{}/epoch-{}-tumor-output.png'.format(outpath, epoch),
normalize=True)
targetC0 = target[:,0,:,:].view(-1, 1, size, size)
vutils.save_image(targetC0,
'{}/epoch-{}-liver-target.png'.format(outpath, epoch),
normalize=True)
targetC1 = target[:,1,:,:].view(-1, 1, size, size)
vutils.save_image(targetC1,
'{}/epoch-{}-tumor-target.png'.format(outpath, epoch),
normalize=True)
output = torch.from_numpy(mergeChannels(output.detach().cpu().numpy(), size)).cuda()
vutils.save_image(data[0],
'{}/image.png'.format(outpath, epoch),
normalize=True)
vutils.save_image(data[2],
'{}/target.png'.format(outpath,epoch),
normalize=True)
vutils.save_image(output.data,
'{}/prediction.png'.format(outpath, epoch),
normalize=True)
##################################
## validate Generator/Segmentor ##
##################################
NetS.eval()
IoUs, dices = [], []
for i, data in enumerate(dataloader_val, 1):
img, target, gt = Variable(data[0]), Variable(data[1]), Variable(data[2])
if cuda:
img = img.cuda()
target = target.cuda()
gt = gt.cuda()
pred = NetS(img)
pred = F.sigmoid(pred)
pred = torch.from_numpy(mergeChannels(pred.detach().cpu().numpy(), size)).cuda()
# pred = pred.type(torch.LongTensor)
pred_np = pred.data.cpu().numpy()
gt = gt.data.cpu().numpy()
for x in range(img.size()[0]):
IoU = (np.sum(pred_np[x][gt[x]==1]) / float(np.sum(pred_np[x]) + np.sum(gt[x]) - np.sum(pred_np[x][gt[x]==1]))) \
+ (np.sum(pred_np[x][gt[x]==2]) / float(np.sum(pred_np[x]) + np.sum(gt[x]) - np.sum(pred_np[x][gt[x]==2])))
dice = (np.sum(pred_np[x][gt[x]==1])*2 / float(np.sum(pred_np[x]) + np.sum(gt[x]))) \
+ (np.sum(pred_np[x][gt[x]==2])*2 / float(np.sum(pred_np[x]) + np.sum(gt[x])))
IoUs.append(IoU)
dices.append(dice)
NetS.train()
print('-------------------------------------------------------------------------------------------------------------------\n')
IoUs = np.array(IoUs, dtype=np.float64)
dices = np.array(dices, dtype=np.float64)
mIoU = np.nanmean(IoUs, axis=0)
mdice = np.nanmean(dices, axis=0)
print('mIoU: {:.4f}'.format(mIoU))
print('Dice: {:.4f}'.format(mdice))
if mIoU > max_iou:
max_iou = mIoU
torch.save(NetS.state_dict(), '%s/checkpoint_epoch_%d.pth' % (outpath, epoch))
vutils.save_image(data[0],
'%s/val_image.png' % outpath,
normalize=True)
vutils.save_image(data[2],
'%s/val_target.png' % outpath,
normalize=True)
pred = pred.type(torch.FloatTensor)
vutils.save_image(pred.data,
'%s/val_prediction.png' % outpath,
normalize=True)
if epoch % 25 == 0:
lr = lr*decay
if lr <= 0.00000001:
lr = 0.00000001
print('Learning Rate: {:.6f}'.format(lr))
# print('K: {:.4f}'.format(k))
print('Max mIoU: {:.4f}'.format(max_iou))
optimizerG = optim.Adam(NetS.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(NetC.parameters(), lr=lr, betas=(beta1, 0.999))
print('-------------------------------------------------------------------------------------------------------------------')
print()