-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathopenssl.go
378 lines (339 loc) · 11.4 KB
/
openssl.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//go:build !cmd_go_bootstrap
// Package openssl provides access to OpenSSL cryptographic functions.
package openssl
/*
#include <stdlib.h> // for free()
static inline void
go_openssl_do_leak_check(void)
{
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if (defined(__SANITIZE_ADDRESS__) && __SANITIZE_ADDRESS__) || \
__has_feature(address_sanitizer)
extern void __lsan_do_leak_check(void);
__lsan_do_leak_check();
#endif
}
*/
import "C"
import (
"errors"
"math/bits"
"strconv"
"sync"
"unsafe"
"github.com/golang-fips/openssl/v2/internal/ossl"
)
var (
// vMajor and vMinor hold the major/minor OpenSSL version.
// It is only populated if Init has been called.
vMajor, vMinor, vPatch uint
)
var (
initOnce sync.Once
initErr error
)
var isBigEndian bool
// CheckVersion checks if the OpenSSL version can be loaded
// and if the FIPS mode is enabled.
// This function can be called before Init.
// All OpenSSL functions used in here should be tagged with "init_1" or "init_3" in shims.h.
func CheckVersion(version string) (exists, fips bool) {
close, err := initForCheckVersion(version)
if err != nil {
return false, false
}
defer close()
return true, FIPS()
}
// Init loads and initializes OpenSSL from the shared library at path.
// It must be called before any other OpenSSL call, except CheckVersion.
//
// Only the first call to Init is effective.
// Subsequent calls will return the same error result as the one from the first call.
//
// The file is passed to dlopen() verbatim to load the OpenSSL shared library.
// For example, `file=libcrypto.so.1.1.1k-fips` makes Init look for the shared
// library libcrypto.so.1.1.1k-fips.
func Init(file string) error {
initOnce.Do(func() {
buf := [2]byte{}
*(*uint16)(unsafe.Pointer(&buf[0])) = uint16(0xABCD)
switch buf {
case [2]byte{0xCD, 0xAB}:
isBigEndian = false
case [2]byte{0xAB, 0xCD}:
isBigEndian = true
default:
panic("Could not determine native endianness.")
}
initErr = opensslInit(file)
})
return initErr
}
func utoa(n uint) string {
return strconv.FormatUint(uint64(n), 10)
}
func errUnsupportedVersion() error {
return errors.New("openssl: OpenSSL version: " + utoa(vMajor) + "." + utoa(vMinor) + "." + utoa(vPatch))
}
// checkMajorVersion panics if the current major version is not expected.
func checkMajorVersion(expected uint) {
if vMajor != expected {
panic("openssl: incorrect major version (" + strconv.Itoa(int(vMajor)) + "), expected " + strconv.Itoa(int(expected)))
}
}
type fail string
func (e fail) Error() string { return "openssl: " + string(e) + " failed" }
// VersionText returns the version text of the OpenSSL currently loaded.
func VersionText() string {
return C.GoString((*C.char)(unsafe.Pointer(ossl.OpenSSL_version(0))))
}
// FIPS returns true if OpenSSL is running in FIPS mode and there is
// a provider available that supports FIPS. It returns false otherwise.
// All OpenSSL functions used in here should be tagged with "init_1" or "init_3" in shims.h.
func FIPS() bool {
switch vMajor {
case 1:
return ossl.FIPS_mode() == 1
case 3:
// Check if the default properties contain `fips=1`.
if ossl.EVP_default_properties_is_fips_enabled(nil) != 1 {
// Note that it is still possible that the provider used by default is FIPS-compliant,
// but that wouldn't be a system or user requirement.
return false
}
// Check if the SHA-256 algorithm is available. If it is, then we can be sure that there is a provider available that matches
// the `fips=1` query. Most notably, this works for the common case of using the built-in FIPS provider.
//
// Note that this approach has a small chance of false negative if the FIPS provider doesn't provide the SHA-256 algorithm,
// but that is highly unlikely because SHA-256 is one of the most common algorithms and fundamental to many cryptographic operations.
// It also has a small chance of false positive if the FIPS provider implements the SHA-256 algorithm but not the other algorithms
// used by the caller application, but that is also unlikely because the FIPS provider should provide all common algorithms.
return proveSHA256("")
default:
panic(errUnsupportedVersion())
}
}
// FIPSCapable returns true if the provider used by default matches the `fips=yes` query.
// It is useful for checking whether OpenSSL is capable of running in FIPS mode regardless
// of whether FIPS mode is explicitly enabled. For example, Azure Linux 3 doesn't set the
// `fips=yes` query in the default properties, but sets the default provider to be SCOSSL,
// which is FIPS-capable.
//
// Considerations:
// - Multiple calls to FIPSCapable can return different values if [SetFIPS] is called in between.
// - Can return true even if [FIPS] returns false, because [FIPS] also checks whether
// the default properties contain `fips=yes`.
// - When using OpenSSL 3, will always return true if [FIPS] returns true.
// - When using OpenSSL 1, Will always return the same value as [FIPS].
// - OpenSSL 3 doesn't provide a way to know if a provider is FIPS-capable. This function uses
// some heuristics that should be treated as an implementation detail that may change in the future.
func FIPSCapable() bool {
if FIPS() {
return true
}
if vMajor == 3 {
// Load the provider with and without the `fips=yes` query.
// If the providers are the same, then the default provider is FIPS-capable.
provFIPS := sha256Provider(_ProviderNameFips)
if provFIPS == nil {
return false
}
provDefault := sha256Provider("")
return provFIPS == provDefault
}
return false
}
// isProviderAvailable checks if the provider with the given name is available.
// This function is used in export_test.go, but must be defined here as test files can't access C functions.
func isProviderAvailable(name string) bool {
if vMajor == 1 {
return false
}
providerName := C.CString(name)
defer C.free(unsafe.Pointer(providerName))
return ossl.OSSL_PROVIDER_available(nil, (*byte)(unsafe.Pointer(providerName))) == 1
}
// SetFIPS enables or disables FIPS mode.
//
// For OpenSSL 3, if there is no provider available that supports FIPS mode,
// SetFIPS will try to load a built-in provider that supports FIPS mode.
func SetFIPS(enable bool) error {
if FIPS() == enable {
// Already in the desired state.
return nil
}
var mode int32
if enable {
mode = int32(1)
} else {
mode = int32(0)
}
switch vMajor {
case 1:
if _, err := ossl.FIPS_mode_set(mode); err != nil {
return err
}
return nil
case 3:
var shaProps, provName cString
if enable {
shaProps = _PropFIPSYes
provName = _ProviderNameFips
} else {
shaProps = _PropFIPSNo
provName = _ProviderNameDefault
}
if !proveSHA256(shaProps) {
// There is no provider available that supports the desired FIPS mode.
// Try to load the built-in provider associated with the given mode.
if p, _ := ossl.OSSL_PROVIDER_try_load(nil, provName.ptr(), 1); p == nil {
// The built-in provider was not loaded successfully, we can't enable FIPS mode.
ossl.ERR_clear_error()
return errors.New("openssl: FIPS mode not supported by any provider")
}
}
_, err := ossl.EVP_default_properties_enable_fips(nil, mode)
return err
default:
panic(errUnsupportedVersion())
}
}
// sha256Provider returns the provider for the SHA-256 algorithm
// using the given properties.
func sha256Provider(props cString) ossl.OSSL_PROVIDER_PTR {
md, _ := ossl.EVP_MD_fetch(nil, _DigestNameSHA2_256.ptr(), props.ptr())
if md == nil {
ossl.ERR_clear_error()
return nil
}
defer ossl.EVP_MD_free(md)
return ossl.EVP_MD_get0_provider(md)
}
// proveSHA256 checks if the SHA-256 algorithm is available
// using the given properties.
func proveSHA256(props cString) bool {
return sha256Provider(props) != nil
}
var zero byte
// baseNeverEmpty returns the address of the underlying array in b.
// If b has zero length, it returns a pointer to a zero byte.
func baseNeverEmpty(b []byte) *byte {
if len(b) == 0 {
return &zero
}
return unsafe.SliceData(b)
}
// pbase returns the address of the underlying array in b,
// being careful not to panic when b has zero length.
func pbase(b []byte) unsafe.Pointer {
return unsafe.Pointer(base(b))
}
// base returns the address of the underlying array in b,
// being careful not to panic when b has zero length.
func base(b []byte) *byte {
if len(b) == 0 {
return nil
}
return unsafe.SliceData(b)
}
// cryptoMalloc allocates n bytes of memory on the OpenSSL heap, which may be
// different from the heap which C.malloc allocates on. The allocated object
// must be freed using cryptoFree. cryptoMalloc is equivalent to the
// OPENSSL_malloc macro.
//
// Like C.malloc, this function is guaranteed to never return nil. If OpenSSL's
// malloc indicates out of memory, it crashes the program.
//
// Only objects which the OpenSSL library will take ownership of (i.e. will be
// freed by OPENSSL_free / CRYPTO_free) need to be allocated on the OpenSSL
// heap.
func cryptoMalloc(n int) unsafe.Pointer {
p, _ := ossl.CRYPTO_malloc(n, nil, 0)
if p == nil {
// Un-recover()-ably crash the program in the same manner as the
// C.malloc() wrapper function.
runtime_throw("openssl: CRYPTO_malloc failed")
}
return p
}
// cryptoFree frees an object allocated on the OpenSSL heap, which may be
// different from the heap which C.malloc allocates on. cryptoFree is equivalent
// to the OPENSSL_free macro.
func cryptoFree(p unsafe.Pointer) {
ossl.CRYPTO_free(p, nil, 0)
}
const wordBytes = bits.UintSize / 8
// Reverse each limb of z.
func (z BigInt) byteSwap() {
for i, d := range z {
var n uint = 0
for j := range wordBytes {
n |= uint(byte(d)) << (8 * (wordBytes - j - 1))
d >>= 8
}
z[i] = n
}
}
func wbase(b BigInt) *byte {
if len(b) == 0 {
return nil
}
return (*byte)(unsafe.Pointer(unsafe.SliceData(b)))
}
func bigToBN(x BigInt) (ossl.BIGNUM_PTR, error) {
if len(x) == 0 {
return nil, nil
}
if isBigEndian {
z := make(BigInt, len(x))
copy(z, x)
z.byteSwap()
x = z
}
// Limbs are always ordered in LSB first, so we can safely apply
// BN_lebin2bn regardless of host endianness.
bn, err := ossl.BN_lebin2bn(wbase(x), int32(len(x)*wordBytes), nil)
if err != nil {
return nil, err
}
return bn, nil
}
func bnToBig(bn ossl.BIGNUM_PTR) BigInt {
if bn == nil {
return nil
}
// Limbs are always ordered in LSB first, so we can safely apply
// BN_bn2lebinpad regardless of host endianness.
x := make(BigInt, ossl.BN_num_bits(bn))
if _, err := ossl.BN_bn2lebinpad(bn, wbase(x), int32(len(x)*wordBytes)); err != nil {
panic(err)
}
if isBigEndian {
x.byteSwap()
}
return x
}
// bnToBinPad converts the absolute value of bn into big-endian form and stores
// it at to, padding with zeroes if necessary. If len(to) is not large enough to
// hold the result, an error is returned.
func bnToBinPad(bn ossl.BIGNUM_PTR, to []byte) error {
_, err := ossl.BN_bn2binpad(bn, base(to), int32(len(to)))
return err
}
func CheckLeaks() {
C.go_openssl_do_leak_check()
}
// versionAtOrAbove returns true when
// (vMajor, vMinor, vPatch) >= (major, minor, patch),
// compared lexicographically.
func versionAtOrAbove(major, minor, patch uint) bool {
return vMajor > major || (vMajor == major && vMinor > minor) || (vMajor == major && vMinor == minor && vPatch >= patch)
}
func bigEndianUint64(b []byte) uint64 {
_ = b[7] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
}