Implement standard CIFAR-100 model in fedjax.models.cifar100 #268
Labels
contributions welcome
Issues for which community contributions are welcome
enhancement
New feature or request
Add a standard implementation of the model for the CIFAR-100 task. The dataset can be found in fedjax.datasets.cifar100.
For the model architecture, we should follow “Adaptive Federated Optimization”. The model architecture is detailed in section 4 as a ResNet-18 (replacing batch norm with group norm). Code for this paper and a Keras implementation of the model can be found here. We suggest using either haiku or flax to implement the model for use with JAX.
If you choose to use haiku, you can use fedjax.create_model_from_haiku to create a fedjax compatible model. If you choose to use flax, wrapping it in a fedjax.Model is fairly straightforward and we can provide guidance for this.
A good example to follow is #265 that checks in a simple linear model for CIFAR-100 and includes the model implementation, tests, and baseline results with FedAvg using this script. Make sure to add a flags file similar to https://github.com/google/fedjax/blob/main/experiments/fed_avg/fed_avg.CIFAR100_LOGISTIC.flags and add the new task to https://github.com/google/fedjax/blob/main/fedjax/training/tasks.py.
Thanks for your contributions!
The text was updated successfully, but these errors were encountered: