-
Notifications
You must be signed in to change notification settings - Fork 534
/
Copy pathrun_xla.py
279 lines (252 loc) · 10.1 KB
/
run_xla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import contextlib
import os
import random
import socket
import sys
from typing import List, Union
import numpy as np
import torch
import torch.multiprocessing
from gemma.config import GemmaConfig, get_model_config
from gemma.model_xla import GemmaForCausalLM
from gemma.tokenizer import Tokenizer
import gemma.xla_model_parallel as xla_model_parallel
USE_CUDA = os.environ.get('USE_CUDA', False)
if not USE_CUDA:
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
else:
# Choose an available port.
with contextlib.closing(socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as s:
s.bind(('', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
MASTER_PORT = str(s.getsockname()[1])
@contextlib.contextmanager
def _set_default_tensor_type(dtype: torch.dtype):
"""Sets the default torch dtype to the given dtype."""
torch.set_default_dtype(dtype)
yield
torch.set_default_dtype(torch.float)
def generate(
i: int,
model_config: GemmaConfig,
ckpt_path: str,
prompts: List[str],
output_lens: List[int],
temperatures: Union[List[float], None],
top_ps: List[float],
top_ks: List[int],
seed: int
):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if USE_CUDA:
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = MASTER_PORT
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(
"nccl",
rank=int(os.environ.get("RANK", 0)),
world_size=int(os.environ.get("WORLD_SIZE", 1)))
xla_model_parallel.set_g_group()
local_rank = int(os.environ.get("LOCAL_RANK", 0))
device = torch.device("cuda", local_rank)
torch.cuda.set_device(local_rank)
else:
device = xm.xla_device()
xm.set_rng_state(seed, device)
rank = xla_model_parallel.get_model_parallel_rank()
world_size = xla_model_parallel.get_model_parallel_world_size()
if rank > 0:
sys.stdout = open(os.devnull, 'w')
# build, load and compile model.
with _set_default_tensor_type(model_config.get_dtype()):
model = GemmaForCausalLM(model_config, world_size, rank, device)
model.load_weights(ckpt_path)
model = model.to(device).eval()
# create tokenizer.
tokenizer = Tokenizer(model_config.tokenizer)
prompt_tokens = [tokenizer.encode(prompt) for prompt in prompts]
min_prompt_len = min(len(p) for p in prompt_tokens)
batch_size = len(prompts)
if temperatures is not None:
assert batch_size == len(temperatures)
assert batch_size == len(top_ps)
assert batch_size == len(top_ks)
max_seq_len = max([len(p) + o for p, o in zip(prompt_tokens, output_lens)])
assert max_seq_len <= model_config.max_position_embeddings
if model_config.num_key_value_heads < world_size:
assert world_size % model_config.num_key_value_heads == 0
n_local_heads = 1
else:
assert model_config.num_key_value_heads % world_size == 0
n_local_heads = model_config.num_key_value_heads // world_size
# build KV caches
kv_caches = []
for _ in range(model_config.num_hidden_layers):
k_cache = torch.zeros(
size=(batch_size, max_seq_len, n_local_heads,
model_config.head_dim),
dtype=model_config.get_dtype(),
device=device,
)
v_cache = torch.zeros(
size=(batch_size, max_seq_len, n_local_heads,
model_config.head_dim),
dtype=model_config.get_dtype(),
device=device,
)
kv_caches.append((k_cache, v_cache))
# prepare inputs
token_ids_tensor = torch.full((batch_size, max_seq_len),
tokenizer.pad_id,
dtype=torch.int64)
input_token_ids_tensor = torch.full((batch_size, min_prompt_len),
tokenizer.pad_id,
dtype=torch.int64)
prompt_length = [len(p) for p in prompt_tokens]
for i, p in enumerate(prompt_tokens):
token_ids_tensor[i, :len(p)] = torch.tensor(p)
input_token_ids_tensor[i, :min_prompt_len] = torch.tensor(
p[:min_prompt_len])
token_ids_tensor = token_ids_tensor.to(device)
prompt_mask_tensor = token_ids_tensor != tokenizer.pad_id
input_token_ids_tensor = input_token_ids_tensor.to(device)
input_positions_tensor = torch.arange(0, min_prompt_len,
dtype=torch.int64).to(device)
mask_tensor = torch.full((1, 1, max_seq_len, max_seq_len),
-2.3819763e38).to(torch.float)
mask_tensor = torch.triu(mask_tensor, diagonal=1).to(device)
curr_mask_tensor = mask_tensor.index_select(2, input_positions_tensor)
output_positions_tensor = torch.LongTensor([min_prompt_len - 1]).to(device)
temperatures_tensor = None if not temperatures else torch.FloatTensor(temperatures).to(device)
top_ps_tensor = torch.FloatTensor(top_ps).to(device)
top_ks_tensor = torch.LongTensor(top_ks).to(device)
output_index = torch.tensor(min_prompt_len, dtype=torch.int64).to(device)
eos_flags_tensor = torch.tensor([False] * batch_size).to(device)
if not USE_CUDA:
xm.mark_step()
# Prefill up to min_prompt_len tokens, then treat other prefill as decode and ignore output.
for i in range(max_seq_len - min_prompt_len):
next_token_ids = model(
input_token_ids=input_token_ids_tensor,
input_positions=input_positions_tensor,
kv_write_indices=None,
kv_caches=kv_caches,
mask=curr_mask_tensor,
output_positions=output_positions_tensor,
temperatures=temperatures_tensor,
top_ps=top_ps_tensor,
top_ks=top_ks_tensor,
)
curr_prompt_mask = prompt_mask_tensor.index_select(
1, output_index).squeeze(dim=1)
curr_token_ids = token_ids_tensor.index_select(
1, output_index).squeeze(dim=1)
output_token_ids = torch.where(curr_prompt_mask, curr_token_ids,
next_token_ids).unsqueeze(dim=1)
token_ids_tensor.index_copy_(1, output_index, output_token_ids)
input_token_ids_tensor = output_token_ids
input_positions_tensor = output_index.unsqueeze(dim=-1)
curr_mask_tensor = mask_tensor.index_select(2, input_positions_tensor)
output_positions_tensor = torch.tensor(0, dtype=torch.int64).to(device)
output_index = output_index + 1
if not USE_CUDA:
xm.mark_step()
# Check if all sequences have reached EOS.
batch_eos_idx = (next_token_ids == tokenizer.eos_id).nonzero(
as_tuple=True)[0]
for eos_idx in batch_eos_idx:
if output_index >= prompt_length[eos_idx]:
eos_flags_tensor[eos_idx] = True
if eos_flags_tensor.all():
break
# Detokenization.
token_ids = token_ids_tensor.tolist()
results = []
for i, tokens in enumerate(token_ids):
trimmed_output = tokens[len(prompt_tokens[i]):len(prompt_tokens[i]) +
output_lens[i]]
if tokenizer.eos_id in trimmed_output:
eos_index = trimmed_output.index(tokenizer.eos_id)
trimmed_output = trimmed_output[:eos_index]
results.append(tokenizer.decode(trimmed_output))
for prompt, result in zip(prompts, results):
print('======================================')
print(f'PROMPT: {prompt}')
print(f'RESULT: {result}')
print('======================================')
def main(args):
model_config = get_model_config(args.variant)
model_config.quant = args.quant
prompts = [args.prompt]
n = len(prompts)
output_lengths = [args.output_len] * n
temperatures = [0.95] * n
top_ps = [1.0] * n
top_ks = [100] * n
if USE_CUDA:
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = MASTER_PORT
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(
"nccl",
rank=int(os.environ.get("RANK", 0)),
world_size=int(os.environ.get("WORLD_SIZE", 1)))
xla_model_parallel.set_g_group()
torch.multiprocessing.spawn(
generate,
args=(
model_config,
args.ckpt,
prompts,
output_lengths,
temperatures,
top_ps,
top_ks,
args.seed,
),
)
else:
xmp.spawn(
generate,
args=(
model_config,
args.ckpt,
prompts,
output_lengths,
temperatures,
top_ps,
top_ks,
args.seed,
),
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt", type=str, required=True)
parser.add_argument("--variant",
type=str,
default="2b",
choices=["2b", "7b"])
parser.add_argument("--output_len", type=int, default=4)
parser.add_argument("--seed", type=int, default=12345)
parser.add_argument("--quant", action='store_true')
parser.add_argument("--prompt", type=str, default="The meaning of life is")
args = parser.parse_args()
main(args)