-
Notifications
You must be signed in to change notification settings - Fork 455
/
Copy pathSBMs.py
executable file
·250 lines (185 loc) · 8.79 KB
/
SBMs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import time
import os
import pickle
import numpy as np
import dgl
import torch
from scipy import sparse as sp
import numpy as np
class load_SBMsDataSetDGL(torch.utils.data.Dataset):
def __init__(self,
data_dir,
name,
split):
self.split = split
self.is_test = split.lower() in ['test', 'val']
with open(os.path.join(data_dir, name + '_%s.pkl' % self.split), 'rb') as f:
self.dataset = pickle.load(f)
self.node_labels = []
self.graph_lists = []
self.n_samples = len(self.dataset)
self._prepare()
def _prepare(self):
print("preparing %d graphs for the %s set..." % (self.n_samples, self.split.upper()))
for data in self.dataset:
node_features = data.node_feat
edge_list = (data.W != 0).nonzero() # converting adj matrix to edge_list
# Create the DGL Graph
g = dgl.DGLGraph()
g.add_nodes(node_features.size(0))
g.ndata['feat'] = node_features.long()
for src, dst in edge_list:
g.add_edges(src.item(), dst.item())
# adding edge features for Residual Gated ConvNet
#edge_feat_dim = g.ndata['feat'].size(1) # dim same as node feature dim
edge_feat_dim = 1 # dim same as node feature dim
g.edata['feat'] = torch.ones(g.number_of_edges(), edge_feat_dim)
self.graph_lists.append(g)
self.node_labels.append(data.node_label)
def __len__(self):
"""Return the number of graphs in the dataset."""
return self.n_samples
def __getitem__(self, idx):
"""
Get the idx^th sample.
Parameters
---------
idx : int
The sample index.
Returns
-------
(dgl.DGLGraph, int)
DGLGraph with node feature stored in `feat` field
And its label.
"""
return self.graph_lists[idx], self.node_labels[idx]
class SBMsDatasetDGL(torch.utils.data.Dataset):
def __init__(self, name):
"""
TODO
"""
start = time.time()
print("[I] Loading data ...")
self.name = name
data_dir = 'data/SBMs'
self.train = load_SBMsDataSetDGL(data_dir, name, split='train')
self.test = load_SBMsDataSetDGL(data_dir, name, split='test')
self.val = load_SBMsDataSetDGL(data_dir, name, split='val')
print("[I] Finished loading.")
print("[I] Data load time: {:.4f}s".format(time.time()-start))
def self_loop(g):
"""
Utility function only, to be used only when necessary as per user self_loop flag
: Overwriting the function dgl.transform.add_self_loop() to not miss ndata['feat'] and edata['feat']
This function is called inside a function in SBMsDataset class.
"""
new_g = dgl.DGLGraph()
new_g.add_nodes(g.number_of_nodes())
new_g.ndata['feat'] = g.ndata['feat']
src, dst = g.all_edges(order="eid")
src = dgl.backend.zerocopy_to_numpy(src)
dst = dgl.backend.zerocopy_to_numpy(dst)
non_self_edges_idx = src != dst
nodes = np.arange(g.number_of_nodes())
new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx])
new_g.add_edges(nodes, nodes)
# This new edata is not used since this function gets called only for GCN, GAT
# However, we need this for the generic requirement of ndata and edata
new_g.edata['feat'] = torch.zeros(new_g.number_of_edges())
return new_g
def positional_encoding(g, pos_enc_dim):
"""
Graph positional encoding v/ Laplacian eigenvectors
"""
# Laplacian
A = g.adjacency_matrix_scipy(return_edge_ids=False).astype(float)
N = sp.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1) ** -0.5, dtype=float)
L = sp.eye(g.number_of_nodes()) - N * A * N
# # Eigenvectors with numpy
# EigVal, EigVec = np.linalg.eig(L.toarray())
# idx = EigVal.argsort() # increasing order
# EigVal, EigVec = EigVal[idx], np.real(EigVec[:,idx])
# g.ndata['pos_enc'] = torch.from_numpy(np.abs(EigVec[:,1:pos_enc_dim+1])).float()
# Eigenvectors with scipy
#EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR')
EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR', tol=1e-2) # for 40 PEs
EigVec = EigVec[:, EigVal.argsort()] # increasing order
g.ndata['pos_enc'] = torch.from_numpy(EigVec[:,1:pos_enc_dim+1]).float()
return g
class SBMsDataset(torch.utils.data.Dataset):
def __init__(self, name):
"""
Loading SBM datasets
"""
start = time.time()
print("[I] Loading dataset %s..." % (name))
self.name = name
data_dir = 'data/SBMs/'
with open(data_dir+name+'.pkl',"rb") as f:
f = pickle.load(f)
self.train = f[0]
self.val = f[1]
self.test = f[2]
print('train, test, val sizes :',len(self.train),len(self.test),len(self.val))
print("[I] Finished loading.")
print("[I] Data load time: {:.4f}s".format(time.time()-start))
# form a mini batch from a given list of samples = [(graph, label) pairs]
def collate(self, samples):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.cat(labels).long()
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = torch.cat(tab_snorm_n).sqrt()
#tab_sizes_e = [ graphs[i].number_of_edges() for i in range(len(graphs))]
#tab_snorm_e = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_e ]
#snorm_e = torch.cat(tab_snorm_e).sqrt()
batched_graph = dgl.batch(graphs)
return batched_graph, labels
# prepare dense tensors for GNNs which use; such as RingGNN and 3WLGNN
def collate_dense_gnn(self, samples):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.cat(labels).long()
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = tab_snorm_n[0][0].sqrt()
#batched_graph = dgl.batch(graphs)
g = graphs[0]
adj = self._sym_normalize_adj(g.adjacency_matrix().to_dense())
"""
Adapted from https://github.com/leichen2018/Ring-GNN/
Assigning node and edge feats::
we have the adjacency matrix in R^{n x n}, the node features in R^{d_n} and edge features R^{d_e}.
Then we build a zero-initialized tensor, say T, in R^{(1 + d_n + d_e) x n x n}. T[0, :, :] is the adjacency matrix.
The diagonal T[1:1+d_n, i, i], i = 0 to n-1, store the node feature of node i.
The off diagonal T[1+d_n:, i, j] store edge features of edge(i, j).
"""
zero_adj = torch.zeros_like(adj)
if self.name == 'SBM_CLUSTER':
self.num_node_type = 7
elif self.name == 'SBM_PATTERN':
self.num_node_type = 3
# use node feats to prepare adj
adj_node_feat = torch.stack([zero_adj for j in range(self.num_node_type)])
adj_node_feat = torch.cat([adj.unsqueeze(0), adj_node_feat], dim=0)
for node, node_label in enumerate(g.ndata['feat']):
adj_node_feat[node_label.item()+1][node][node] = 1
x_node_feat = adj_node_feat.unsqueeze(0)
return x_node_feat, labels
def _sym_normalize_adj(self, adj):
deg = torch.sum(adj, dim = 0)#.squeeze()
deg_inv = torch.where(deg>0, 1./torch.sqrt(deg), torch.zeros(deg.size()))
deg_inv = torch.diag(deg_inv)
return torch.mm(deg_inv, torch.mm(adj, deg_inv))
def _add_self_loops(self):
# function for adding self loops
# this function will be called only if self_loop flag is True
self.train.graph_lists = [self_loop(g) for g in self.train.graph_lists]
self.val.graph_lists = [self_loop(g) for g in self.val.graph_lists]
self.test.graph_lists = [self_loop(g) for g in self.test.graph_lists]
def _add_positional_encodings(self, pos_enc_dim):
# Graph positional encoding v/ Laplacian eigenvectors
self.train.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.train.graph_lists]
self.val.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.val.graph_lists]
self.test.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.test.graph_lists]