-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
494 lines (419 loc) · 22.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<title>GROOPS Overview Slides</title>
<link rel="icon" href="https://groops-devs.github.io/groops/html/static/groops_icon.png">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/reset.css" integrity="sha256-GqjoTJyry/5NlbGYef5IucLF5tVFdMvmebwi7bn+ErY=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/reveal.css" integrity="sha256-D+4fFDtnJGnOvyw3MKsmzNiTFHR7IY1mLz6vXv9Tr8A=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/theme/white.css" integrity="sha256-408oRloVmpK+B80Yai38FS2VBdxKlzgFkobhPC676+0=" crossorigin="anonymous" id="theme">
<style>
.reveal section div.slide-body {text-align: left;}
.reveal section h2 { font-size: 18pt; }
.reveal section h3 { font-size: 16pt; }
.reveal section p { font-size: 14pt; }
.reveal section p.tiny { font-size: 11pt; }
.reveal section li { font-size: 14pt; }
.reveal section .h3-fake { font-size: 16pt; font-weight: bold; }
.reveal section a.black { color: black;}
.reveal section figcaption { font-size: 10pt; }
.reveal section td { font-size: 16pt; }
.reveal section img { vertical-align: middle; }
#license {
position: absolute;
bottom: 0%;
left: 0%;
width: 15%;
padding: 5pt;
}
</style>
</head>
<body>
<div class="reveal">
<div class="slides">
<section id="title_slide">
<img src="https://github.com/groops-devs/groops/blob/main/docs/html/static/groops_banner.png?raw=True">
<div class="slide-body">
<p>The Gravity Recovery Object Oriented Programming System (GROOPS) is a software toolkit for tasks
like gravity field recovery, GNSS constellation and ground station processing, and satellite orbit determination.</p>
<p>The source code is <a href="https://www.gnu.org/licenses/gpl-3.0.en.html" target="_blank">GPL v3</a> licensed and available on <a href="https://github.com/groops-devs/groops" target="_blank">GitHub</a>.</p>
<table width="50%">
<tr>
<th>
<h3>Applications</h3>
</th>
<th>
<h3>Software Overview</h3>
</th>
</tr>
<tr>
<td>
<a href="#/applications"><img src="static/applications.png"></a>
</td>
<td>
<a href="#/software"><img src="https://github.com/groops-devs/groops/blob/main/docs/figures/gui_overview.png?raw=True"></a>
</td>
</tr>
</table>
<p class="tiny">Navigating the PICO: Use arrow keys or swipe to changes the slide. Pressing ESC shows an <a onclick="Reveal.toggleOverview();" href="#">overview</a> of all slides.</p>
</div>
</section>
<section id="applications">
<h2>Applications</h2>
<table width=75%>
<tr>
<td>Gravity Field Recovery</td>
<td>GNSS Processing</td>
</tr>
<tr>
<td><img src="static/degreeAmplitudes_GOCO06s.png"></td>
<td><img src="static/stationComparison_2015-10-02.png"></td>
</tr>
</table>
<table width=75%>
<tr>
<td>Kinematic Orbit Determination</td>
<td>Data Analysis</td>
</tr>
<tr>
<td><img src="static/diffOrbit-5svs30sClock.png"></td>
<td><img src="static/grace_antCentDifference_argumentOfLatitude.png"></td>
</tr>
</table>
</section>
<section id="gravity_field_recovery">
<section>
<h3>Gravity Field Recovery</h3>
<div class="slide-body">
<p>GROOPS has been extensively used for global and local gravity field recovery. Examples of gravity data sets produced by GROOPS include:</p>
<table>
<tr><td class="h3-fake">GOCO06s</td>
<td class="h3-fake">ITSG-Grace2018</td>
<td><h3>Lunar Gravity Field</h3></td>
<td><h3>Regional Geoid</h3></td></tr>
<tr>
<td width="25%">
<img src="static/goco06s.png">
</td>
<td width="25%">
<img src="static/mosaic.png">
</td>
<td width="25%">
<img src="static/Free_air_gravity_anomaly in GrazLGM420b.png">
</td>
<td width="25%">
<img src="static/1_pro.png">
</td>
</tr>
</table>
</div>
</section>
<section>
<h3>GOCO06s</h3>
<div class="slide-body">
<p>GOCO06s (<a href="https://doi.org/10.5194/essd-13-99-2021">Kvas et al. 2021</a>) is a satellite-only, global gravity field model up to degree and order 300, with secular and annual variations up to degree and order 200. It was produced by the GOCO Team (Technical University of Munich, University of Bonn, Graz University of Technology, Austrian Academy of Sciences, University of Bern) and is based on 1,160,000,000 observations from 19 satellites.</p>
</div>
<figure>
<img src="static/goco06s_01.png" width="25%">
<img src="static/goco06s_trend.png" width="25%">
<img src="static/goco06s_annual.png" width="25%">
</figure>
</section>
<section>
<h3>ITSG-Grace2018</h3>
<div class="slide-body">
<p>The ITSG-Grace2018 gravity field model (<a href="https://doi.org/10.1029/2019JB017415" target="_blank">Kvas et al. 2019</a>, <a href="http://doi.org/10.5880/ICGEM.2018.003" target="_blank">Mayer-Gürr et al. 2018</a>) is a GRACE only gravity field time series computed in Graz, providing unconstrained monthly and Kalman smoothed daily solutions. Since 2019,
GROOPS is also used to compute operational gravity field solution from GRACE Follow-On data.</p>
<p>A tutorial for GRACE/GRACE-FO processing with GROOPS can be found in the <a href="https://groops-devs.github.io/groops/html/cookbook.gravityFieldGrace.html" target="_blank">Cookbook</a>.</p>
</div>
<img src="static/mosaic.png">
</section>
<section>
<h3>Lunar Gravity Field</h3>
<div class="slide-body">
<p>GROOPS was used to compute the gravity field of the Moon from GRAIL radio science tracking and
inter-satellite measurements on the <a href="https://www.oeaw.ac.at/en/iwf/institute/infrastructure/high-performance-computer" target="_blank">LEO high-performance computer</a>
of the Austrian Acedemy of Sciences. </p>
<p>The resulting model GrazLGM420b+ (<a href="https://doi.org/10.1016/j.icarus.2018.08.011" target="_blank">Wirnsberger et al. 2019</a>) is available on <a href="http://icgem.gfz-potsdam.de/getmodel/gfc/43d37bf3cd989ce670cd2375b725a69c974bed4a3d356faa88ffd47a8998902b/GrazLGM420b+.gfc" target="_blank">ICGEM</a>.</p>
</div>
<figure>
<img src="static/Free_air_gravity_anomaly in GrazLGM420b.png" width="75%">
<figcaption>Lunar free air anomalies from GrazLGM420b+.</figcaption>
</figure>
</section>
<section>
<h3>Regional Geoid</h3>
<div class="slide-body">
<p>Next to global gravity field recovery from satellite data, GROOPS also supports the computation of local and regional gravity field models from
terrestrial data using radial basis functions. A detailed overview of the methodology is given in <a href="https://doi.org/10.1007/978-3-319-10837-7_19" target="_blank">Pock et al. 2012</a>. </p>
<p>A step-by-step guide for regional geoid determination can be found in the <a href="https://groops-devs.github.io/groops/html/cookbook.regionalGeoid.html" target="_blank">GROOPS Cookbook</a>.</p>
</div>
<figure>
<img src="static/1_pro.png" width="50%">
<figcaption>Free air anomalies in Austria computed with GROOPS from terrestrial observations.</figcaption>
</figure>
</section>
</section>
<section id="gnss_processing">
<section>
<h3>GNSS Processing</h3>
<div class="slide-body">
<p>GNSS processing in GROOPS is based on an uncombined and undifferenced (raw) observation approach (<a href="https://doi.org/10.1007/s00190-018-1223-2" target="_blank">Strasser et al. 2019</a>).</p>
<p>The contribution of Graz University of Technology (TUG) to the third reprocessing campaign (repro3) of the International GNSS Service (IGS) was computed with GROOPS. It comprises a time series of GNSS products, for example station positions and satellite orbits, covering the years 1994-2020. PICO <a href="https://meetingorganizer.copernicus.org/EGU21/EGU21-2144.html" target="_blank">EGU21-2144</a> shows a thorough evaluation of the solution.
</p>
</div>
</section>
<section>
<h3>Satellite Orbits and Clocks</h3>
<p>GROOPS is capable of handling multi-GNSS constellations and can produce satellite data products like precise orbits, clocks, attitude and signal biases.</p>
<table>
<tr>
<td width=50%>
<figure>
<img src="static/orbitDiscontinuityRms_new.png">
<figcaption>
Median orbit midnight discontinuities of GROOPS derived satellite orbits for GPS, GLONASS and Galileo from 1994 to 2020.
</figcaption>
</figure>
</td>
<td>
<figure>
<img src="static/tug_orbitDiscontinuityRms2020.png">
<figcaption>
Orbit midnight discontinuity RMS per satellite for 2020.
</figcaption>
</figure>
</td>
</tr>
</table>
<p>A guide on how to compute GNSS constellations can be found in the <a href="https://groops-devs.github.io/groops/html/cookbook.gnssNetwork.html" target="_blank">Cookbook</a>.</p>
</section>
<section>
<h3>Ground Station Networks</h3>
<p>Next to GNSS constellations, GROOPS can compute large station networks to estimate station positions, station signal biases, clocks and troposphere parameters.</p>
<table>
<tr>
<td width=50%>
<figure>
<img src="static/stationCount.png">
<figcaption>
Number of processed stations and satellites per day from 1994 to 2020.
</figcaption>
</figure>
</td>
<td>
<figure>
<img src="static/stationComparison_2015-10-02.png">
<figcaption>
Displacements relative to ITRF2014 of a station network computed with GROOPS.
</figcaption>
</figure>
</td>
</tr>
</table>
</section>
<section>
<h3>Precise Point Positioning</h3>
<div class="slide-body">
<p>Next to global and regional networks and satellites orbits and clocks, GROOPS can also be used to perform
single-station Precise Point Positioning (PPP).</p>
<p>A step-by-step guide on how to set up PPP in GROOPS can be found in the <a href="https://groops-devs.github.io/groops/html/cookbook.gnssPpp.html" target="_blank">cookbook</a>.</p>
</div>
<figure>
<img src="static/positionTimeSeries.graz.png">
<figcaption>
Position and clock estimates for GRAZ using PPP.
</figcaption>
</figure>
</section>
</section>
<section id="kinematic_orbits">
<section>
<h3>Kinematic Orbit Determination</h3>
<p>GROOPS can be used to estimate high-quality kinematic orbits of low-Earth orbit (LEO) satellites from GNSS observations using the
raw observation approach (<a href="https://doi.org/10.1007/s00190-015-0872-7" target="_blank">Zehentner and Mayer-Gürr 2015</a>).
Kinematic orbits produced with GROOPS are, for example, used by the
<a href="https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/activities/scientific-projects/disc#MAGF" target="_blank">ESA SWARM DISC</a>
and the <a href="https://www.lrg.tum.de/iapg/forschung/schwerefeld/goco/" target="_blank">GOCO consortium</a> for gravity field recovery.
</p>
<p>Like most features of GROOPS, kinematic orbit processing is data agnostic, that is, once the required data and meta data is compiled, the processing steps are
independent of the satellite mission. So far kinematic orbits for 19 satellites including dedicated gravity missions like GRACE, GRACE-FO, CHAMP and GOCE but
also other LEO satellites like Jason-1/2/3, MetOp-A, Sentinel-1A/B, Sentinel-3A/B, Swarm-1/2/3, TanDEM-X, TerraSAR-X have been computed.
</p>
<p>A step-by-step tutorial on how kinematic orbit determination works in GROOPS can be found in the <a href="https://groops-devs.github.io/groops/html/cookbook.kinematicOrbit.html" target="_blank">cookbook</a>.</p>
<figure>
<img src="static/grace2_orbitRms.png" width="50%">
<figcaption>
RMS of high-pass filtered differences between kinematic and dynamic orbit for GRACE-B
</figcaption>
</figure>
</section>
<section>
<h3>Estimation of Antenna Center Variations</h3>
<p>Antenna center variations (ACV) are a key criteria for high-quality kinematic orbits. GROOPS has the capability to estimate
time-variable ACVs for both code and phase observations.</p>
<table width="75%">
<tr>
<td>
<figure>
<img src="static/acv_grace1_occultation-off_0.png">
<figcaption>
GRACE-A ACV for C1C when no radio occultation is performed.
</figcaption>
</figure>
</td>
<td>
<figure>
<img src="static/acv_grace1_occultation-on_0.png">
<figcaption>
GRACE-A ACV for C1C when the radio occultation antenna is
switched on.
</figcaption>
</figure>
</td>
</tr>
</table>
</section>
</section>
<section id="data_analysis">
<section>
<h3>Data Pre- and Post-processing</h3>
<p>GROOPS is able to perform general data pre- and post-processing like outlier detection, resampling, detrending, and filtering of time series and spatial data.
Additionally, GROOPS offers statistical analysis, and spectral analysis in Fourier or wavelet domain.</p>
<p>Data sets can be transformed and visualized in different domains. Satellite observations, for example, can be mapped to the satellite ground track which
potentially reveals geographically correlated features.</p>
<p>A short example of data pre- and post-processing can be found in the <a href="https://groops-devs.github.io/groops/html/cookbook.instrument.html" target="_blank">cookbook</a>.</p>
</section>
<section>
<h3>Time Series Analysis</h3>
<p>GROOPS supports various methods for the analysis of observation and model time series. These include spectral methods like
wavelet decomposition or Fourier transformation or the computation of different sample statistics.
Time series data can also be co-located with, for example, a satellite orbit to transform between different spatial representations and time domain.</p>
<table width="100%">
<tr>
<td>
<figure>
<img src="static/powerSpectrum_2019-01.png">
<figcaption>
GRACE-FO post-fit range rate residuals amplitude spectral density.
</figcaption>
</figure>
</td>
<td>
<figure>
<img src="static/scaleogram.png">
<figcaption>
Wavelet decomposition of GRACE-FO post-fit range rate residuals.
</figcaption>
</figure>
</td>
<td>
<figure>
<img src="static/historgram.png">
<figcaption>
Histogram of GRACE-FO range rate residuals.
</figcaption>
</figure>
</td>
</tr>
</table>
</section>
<section>
<h3>Spatial Statistics</h3>
<p>Similar as in time domain, GROOPS can analyize spatial or spatio-temporal data sets. In the example shown here we
gauge the noise in different GRACE solutions by computing the RMS in quiet ocean regions.
</p>
<table width="100%">
<tr>
<td>
<figure>
<img src="static/930oceanRms_01timeSeries_rmsOcean.png">
<figcaption>
Quiet ocean RMS time series for different GRACE-FO solutions.
</figcaption>
</figure>
</td>
<td>
<figure>
<img src="static/930oceanRms_02_rmsGrid_ITSG.png">
<figcaption>
Gridded RMS for ITSG-Grace_operational GRACE-FO solution.
</figcaption>
</figure>
</td>
</tr>
</table>
</section>
<section id="visualization">
<h3>Data Visualization</h3>
<p>Data visualization is realized through the Generic Mapping Tools (GMT, <a href="https://doi.org/10.1029/2019GC008515" target="_blank">Wessel et al. 2019</a>). GMT is not included in the source code, GROOPS rather generates shell or batch
scripts which can be passed to the GMT executable.</p>
<p>Figures are composed via different layers which can be created and rearranged in the <a href="#/gui">GUI</a>. This makes is easy to
generate publication-quality figures.</p>
</section>
</section>
<section id="software">
<section>
<h2>Software Overview</h2>
<p>GROOPS is written in C++, with the <a href="https://github.com/groops-devs/groops" target="_blank">Source Code</a> and <a href="https://groops-devs.github.io/groops/html/index.html" target="_blank">Documentation</a> hosted on GitHub.</p>
<p>User interaction with GROOPS is based on <a href="https://groops-devs.github.io/groops/html/general.configFiles.html">configuration files</a> typically generated in the <a href="#/gui">GUI</a>.
A configuration file represents a sequence of smaller tasks dubbed <it>programs</it>, which are building blocks for complex and flexible <a href="#/applications">processing chains</a>.</p>
</section>
<section id="gui">
<h2>Graphical User Interface (GUI)</h2>
<p>The <a href="https://groops-devs.github.io/groops/html/general.gui.html">GROOPS GUI</a> offers a convenient way for generating, managing and running configuration files.</p>
<img src="https://github.com/groops-devs/groops/blob/main/docs/figures/gui_overview.png?raw=True">
</section>
<section>
<h2>Portability</h2>
<p>GROOPS can be installed and run on all major platforms: Linux, Windows and MacOS</p>
<p>Installation guides for Windows and Linux are available on <a href="https://github.com/groops-devs/groops/blob/main/INSTALL.md">GitHub</a>.</p>
<p>GROOPS can be installed on headless systems and has been run on multiple supercomputers of the <a href="https://prace-ri.eu/">PRACE</a>
association.</p>
</section>
<section id="dependencies">
<h2>Dependencies</h2>
<p>While GROOPS is intended to be a standalone software package, some functionality depends on external libraries.
Hard dependencies are:</p>
<ul>
<li>Expat XML parser</li>
<li>IERS Software Collection</li>
<li>BLAS/LAPACK</li>
</ul>
<p>Additional libraries extend the feature set of GROOPS:</p>
<ul>
<li>NetCDF and zlib: for reading and writing NetCDF and compressed files</li>
<li>ERFA: for high-precision Earth rotation</li>
</ul>
<p>Parallel execution is realized throught the Message Passing Interface (MPI, Standard 3.0 or higher). Most GROOPS programs are implemented with
parallelization in mind. If an MPI implementation is present, the software can make use of mulitple cores on a single system,
or run on a distributed high-performance computing cluster.</p>
<p>The generic mapping tools (GMT) are used for <a href="#/visualization">data visualization</a>.</p>
</section>
</section>
<section id="references">
<h3>References</h3>
<p>Kvas, A., Brockmann, J. M., Krauss, S., Schubert, T., Gruber, T., Meyer, U., Mayer-Gürr, T., Schuh, W.-D., Jäggi, A., and Pail, R.: GOCO06s – a satellite-only global gravity field model, Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021, 2021.</p>
<p>Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N., & Mayer‐Gürr, T. (2019). ITSG‐Grace2018: Overview and evaluation of a new GRACE‐only gravity field time series. Journal of Geophysical Research: Solid Earth, 124, 9332– 9344. https://doi.org/10.1029/2019JB017415</p>
<p>Mayer-Gürr, Torsten; Behzadpur, Saniya; Ellmer, Matthias; Kvas, Andreas; Klinger, Beate; Strasser, Sebastian; Zehentner, Norbert (2018): ITSG-Grace2018 - Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services. https://doi.org/10.5880/ICGEM.2018.003</p>
<p>Wirnsberger, H., Krauss, S., & Mayer-Gürr, T. (2019). First independent Graz Lunar Gravity Model derived from GRAIL. Icarus, 317, 324–336. https://doi.org/https://doi.org/10.1016/j.icarus.2018.08.011</p>
<p>Pock, C., Mayer-Guerr, T., & Kuehtreiber, N. (2014). Consistent combination of satellite and terrestrial gravity field observations in regional geoid modeling: A case study for Austria. In U. Marti (Ed.), International Association of Geodesy Symposia (Vol. 141, pp. 151–156). Springer International Publishing. https://doi.org/10.1007/978-3-319-10837-7_19</p>
<p>Zehentner, N., Mayer-Gürr, T. Precise orbit determination based on raw GPS measurements. J Geod 90, 275–286 (2016). https://doi.org/10.1007/s00190-015-0872-7</p>
<p>Strasser, S., Mayer-Gürr, T. & Zehentner, N. Processing of GNSS constellations and ground station networks using the raw observation approach. J Geod 93, 1045–1057 (2019). https://doi.org/10.1007/s00190-018-1223-2</p>
<p>Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556– 5564. https://doi.org/10.1029/2019GC008515</p>
</section>
</div>
</div>
<div id="license">
<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/80x15.png" /></a><br /><p class="reveal" style="font-size: 10pt;">This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p>
</div>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/reveal.min.js"></script>
<script>
Reveal.initialize({
hash: true,
plugins: []
});
</script>
</body>
</html>