-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathECFM_NN_helpers.py
638 lines (580 loc) · 33.1 KB
/
ECFM_NN_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import numpy as np
import random as rand
import matplotlib.pyplot as plt
from keras import Sequential
from keras.layers import Dropout
from keras.layers import Dense
from keras.layers import Input
from sklearn.linear_model import LinearRegression
# Updating Default Plot Font to be LaTex
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
def get_sensitivity(b):
''' get_sesativity calculates the sensitivity resulting from the A' * v operation
Args:
b: The result of the A' * v operation
Returns:
The real valued magnitude of the complex numbers that result from the multiplication
'''
return np.abs(b)
def generate_constant_data(A, size, min_vel, max_vel):
''' Generates a sample of sensitivity and velocity data using a constant velocity profiles
Each component of the velocity profile is set to the same number that is between min_vel and max_vel
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
for i in range(size):
# creating the random v vector
velocity_profile[i] = rand.uniform(min_vel, max_vel) * np.ones((A.shape[1], 1))
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def generate_linear_data(A, size, min_vel, max_vel, rad_pos):
''' Generates a sample of sensitivity and velocity data using a linear velocity profiles
A random temp_max_vel is generated within the range min_val to max_vel then a random temp_min_vel
is generated in the range temp_max_vel and min_vel. The range over which the fit is performed is
then normalized to prevent numeric instability when fitting and to maintian relative spaces between
the points. A linear fit is performed between the starting and stopping points of the normalized range
and each point within the normalized range is sampled.
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
rad_pos: A list of radial positions where the velocity profile should be sampled
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
scaled_rad_pos = (rad_pos / rad_pos[-1]).reshape(-1, 1)
for i in range(size):
# creating the random v vector
temp_max_vel = rand.uniform(min_vel, max_vel)
temp_min_vel = rand.uniform(min_vel, temp_max_vel)
slope = (temp_min_vel - temp_max_vel) / (scaled_rad_pos[-1] - scaled_rad_pos[0])
velocity_profile[i] = (slope * (scaled_rad_pos - scaled_rad_pos[0]) + temp_max_vel).reshape(-1, 1)
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def generate_parabolic_data(A, size, min_vel, max_vel, rad_pos):
''' Generates a sample of sensitivity and velocity data using parabolic velocity profiles
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
rad_pos: A list of radial positions where the velocity profile should be sampled
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
scaled_rad_pos = (rad_pos / rad_pos[-1]).reshape(-1, 1)
for i in range(size):
# creating the random v vector
temp_max_vel = rand.uniform(min_vel, max_vel)
temp_min_vel = rand.uniform(min_vel, temp_max_vel)
coef = (temp_max_vel - temp_min_vel) / (1 - (scaled_rad_pos[0] / scaled_rad_pos[-1])**2)
velocity_profile[i] = coef * (1 - (scaled_rad_pos / scaled_rad_pos[-1])**2) + temp_min_vel
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def generate_power_data(A, size, min_vel, max_vel, rad_pos, R, min_n, max_n):
''' Generates a sample of sensitivity and velocity data using parabolic velocity profiles
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
rad_pos: A list of radial positions where the velocity profile should be sampled
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
scaled_rad_pos = (rad_pos / R).reshape(-1, 1)
for i in range(size):
# creating the random v vector
temp_max_vel = rand.uniform(min_vel, max_vel)
n = rand.uniform(min_n, max_n)
u_max = temp_max_vel / ( 1 - scaled_rad_pos[0])**( 1 / n )
velocity_profile[i] = u_max * ( 1 - scaled_rad_pos)**( 1 / n )
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def generate_monotonic_data(A, size, min_vel, max_vel):
''' Generates a sample of sensitivity and velocity data using a random monotonically decreasing velocity profile
Each component of the velocity profile is set to a random value between min_vel and max_vel and
v_i - 1 >= v_i
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
for i in range(size):
# creating the random v vector
velocity_profile[i][0] = rand.uniform(min_vel, max_vel)
velocity_profile[i][-1] = rand.uniform(min_vel, velocity_profile[i][0])
for j in range(1, A.shape[1] - 1):
velocity_profile[i][j] = rand.uniform(velocity_profile[i][-1], velocity_profile[i][j - 1])
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def generate_monotonic_limited_data(A, size, min_vel, max_vel, percent):
''' Generates a sample of sensitivity and velocity data using a random monotonically decreasing velocity profile
Each component of the velocity profile is set to a random value between min_vel and max_vel and
v_i - 1 >= v_i
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
for i in range(size):
# creating the random v vector
velocity_profile[i][0] = rand.uniform(min_vel, max_vel)
for j in range(1, A.shape[1]):
velocity_profile[i][j] = rand.uniform((1 - percent) * velocity_profile[i][j - 1], velocity_profile[i][j - 1])
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def generate_random_data(A, size, min_vel, max_vel):
''' Generates a sample of sensitivity and velocity data using a random velocity profiles
Each component of the velocity profile is set to a random value between min_vel and max_vel
Args:
A: the matrix generated from the COMSOL simulation, (M, N)
size: the number of pairs of sensitivity, velocity vectors that you want to generate
min_vel: the minimum fluid velocity that will be included in the sensitivity generation
max_vel: the maximum fluid velocity that will be included in the sensitivity generation
Returns:
sensitivity: (size, M, 1) ndarray of sensitivity matricies.
velocity_profile: (size, N, 1) ndarray of corrisponding velocty profiles.
phases: (size, M, 1) of phases of the values in b
bs: (size, M, 1) ndarray of both the real and imginary components of the b vector
'''
sensitivity = np.zeros((size, A.shape[0], 1))
velocity_profile = np.zeros((size, A.shape[1], 1))
phases = np.zeros((size, A.shape[0], 1))
bs = np.zeros((size, A.shape[0], 1), dtype=complex)
for i in range(size):
# creating the random v vector
velocity_profile[i] = np.reshape(np.array([rand.uniform(min_vel, max_vel) for j in range(A.shape[1])]), (A.shape[1], 1))
b = np.matmul(A, velocity_profile[i])
phases[i] = np.angle(b)
sensitivity[i] = np.reshape(get_sensitivity(b), (A.shape[0], 1))
bs[i] = b
return sensitivity, velocity_profile, phases, bs
def get_with_phase_input(sensitivity, phase, sensitivity_scale_factor=None, phase_scale_factor=None):
''' Puts phases and sensitivity into the expected input for the NN model and scales them as needed
Args:
sensitivity: The sensitivity data to be used on the model
phase: The phase data to be used on the model
sensitivity_scale_factor: The factor the sensitivity should be scaled by. If none is provided
sensitivity will be scaled in the method setup by the scale_sensitivity method
expected shape is (N, num_compenets, 1)
phase_scale_factor: The factor the phase should be scaled by. If none is provided
phase will be scaled in the method setup by the scale_sensitivity method
expected shape is (N, num_compenets, 1)
Returns:
scaled_input: The sensitivity and phases scaled and concatinated into the expected format for the NN
sensitivity_scale_factor: The factor the sensitivity was scaled by
phase_scale_factor: The factor the phase was scaled by
'''
if sensitivity_scale_factor == None:
sensitivity_scaled, sensitivity_scale_factor = scale_sensitivty(sensitivity)
else:
sensitivity_scaled = sensitivity / sensitivity_scale_factor
if phase_scale_factor == None:
phase_scaled, phase_scale_factor = scale_phase(phase)
else:
phase_scaled = phase / phase_scale_factor
scaled_input = np.ma.concatenate([sensitivity_scaled, phase_scaled], axis=1)
return scaled_input, sensitivity_scale_factor, phase_scale_factor
def scale_velocity(velocity, max_vel):
''' Method scales a velocity profile between 0 and 1 for NN training
Args:
velocity: The velocity profile(s) that should be scaled
max_vel: The maximum possible velocity in the training set
Returns:
The velocity profile(s) scaled such that all are between 0 and 1
'''
return velocity / max_vel
def scale_sensitivty(sensitivity, scale_factor=None):
''' Method scales the sensitivity beetween 0 and 1 for NN use
Args:
sensitivity: The sensitivity profile(s) that need to be scaled
scale_factor: The factor by which they will be scaled. If none is provided
it will be scaled by the maximum sensitivity in the data set
Returns:
The sensitivity scaled between 0 and 1
scale_factor: the factor by which the sensitivity was scaled
'''
if scale_factor == None:
scale_factor = np.max(sensitivity)
return sensitivity / scale_factor, scale_factor
def scale_phase(phase, scale_factor=None):
''' Method scales the phases by the largest magnitude of the provided phases
Args:
phases: The sensitivity profile(s) that need to be scaled
scale_factor: The factor by which they will be scaled. If none is provided
it will be scaled by the maximum absolute value of phase in the data set
Returns:
The phase scaled
scale_factor: the factor by which the phase was scaled
'''
if scale_factor == None:
scale_factor = np.max(np.abs(phase))
return phase / scale_factor, scale_factor
def plot_model_results(profile_type, training_velocity, model_velocity, regression=True,
component_graphs=True, global_graphs=True,
title_font_size=20, xlabel_font_size=16, ylabel_font_size=16,
bins=50, figsize=None, show_legend=True, hist_range_mag=0.1):
''' Creates a plot of the NN performance for each velocity component being modeled
The plot will be a num_vel x 2 subplot where each component has a plot of its predictions versus the actual
and next to that will be a histogram where the difference between the actual and calculated values is plotted
Args:
training_velocity: The correct values for the velocity profile.
Expected as (size, num_components, 1)
model_velocity: The values calcualted by the model for the velocity profile.
Expected as (size, num_components, 1)
file_path: The location to where you want to save the pdf version of the results
regression: A boolean value if set to true a linear regression of the models performance will be included in the plots.
Set to True by default
component_graphs: An option to show a graph of each component of velocity seperately
global_graphs: An option to show the graph of the results of all components together
title_font_size: Sets the font size of the title for each subplot. Default = 12
xlabel_font_size: Sets the font size of the title for each subplot. Default = 12
ylabel_font_size: Sets the font size of the title for each subplot. Default = 12
bins: the number of bins to be used when creating the historgams. Defauly = 50
figsize: An optional specifer for a custom size figure to be created. Default = None
show_lenend: A boolean option to turn on and off the legend being displayed. Default = True
hist_range_mag: The upper bound of the histogram range. A symmetric range will be used. Default = 0.1
Returns:
Nothing is returned the plot is created and displayed
'''
# creating x labels for plotting linear fits
line_data = np.arange(np.min(training_velocity), np.max(training_velocity), np.min(training_velocity) * 1e-3 + 1e-3).reshape(-1, 1)
# making the correct answers into a 1 dimensional array
correct = np.array(training_velocity).reshape(training_velocity.shape[0] * training_velocity.shape[1], 1)
# making the model answers into a 1 dimensional array
guesses = np.array(model_velocity).reshape(model_velocity.shape[0] * model_velocity.shape[1], 1)
# Getting the components for each vector
training_components = np.zeros((training_velocity.shape[0], training_velocity.shape[1]))
model_components = np.zeros((training_velocity.shape[0], training_velocity.shape[1]))
history_range = (-hist_range_mag, hist_range_mag)
# seperating the components for each predition
for i in range(training_velocity.shape[0]):
for j in range(training_velocity.shape[1]):
training_components[i, j] = training_velocity[i, j, 0]
model_components[i, j] = model_velocity[i, j]
if regression:
# Linear Regression for all of the components of every prediction
global_fit = LinearRegression().fit(correct, guesses)
regressions = []
# Creating a linear fit for each component
for i in range(training_velocity.shape[1]):
temp_correct = training_components[:, i]
temp_guess = model_components[:, i]
regressions.append(LinearRegression().fit(temp_correct.reshape(-1, 1), temp_guess.reshape(-1, 1)))
# Creating the plots and subplots
num_components = training_velocity.shape[1]
global_index = 0
file_name = profile_type + '_Velocity_Results/' + profile_type + '_'
if component_graphs and not global_graphs:
file_name += 'All_Components_'
if figsize == None:
figsize = (10, 30)
fig = plt.figure(figsize=(20, 30))
gs = fig.add_gridspec(num_components, 2, hspace=0.3)
if global_graphs and not component_graphs:
file_name += 'Global_Only_'
if figsize == None:
figsize = (10, 5)
fig = plt.figure(figsize=figsize)
gs = fig.add_gridspec(1, 2, hspace=0.3)
if component_graphs and global_graphs:
file_name += 'All_Profiles_'
if figsize == None:
figsize = (10, 40)
fig = plt.figure(figsize=figsize)
gs = fig.add_gridspec(num_components + 1, 2, hspace=0.3)
global_index = num_components
axs = gs.subplots()
if regression:
file_name += 'With_Regression.pdf'
else :
file_name += 'No_Regression.pdf'
# Plotting results for every individual component
line_xlabel = 'Actual [m/s]'
line_ylabel = 'Predicted [m/s]'
hist_xlabel = 'Predicted - Actual [m/s]'
hist_ylabel = 'Counts'
if component_graphs:
for i in range(num_components):
legend_names = ['Model', 'y = x']
axs[i, 0].set
axs[i, 0].set_title('$\mathregular{v_{%d}}$' % (i), fontsize=title_font_size)
axs[i, 0].set_xlabel(line_xlabel, fontsize=xlabel_font_size)
axs[i, 0].set_ylabel(line_ylabel, fontsize=ylabel_font_size)
axs[i, 0].plot(training_components[:, i], model_components[:, i], 'o')
axs[i, 0].plot(line_data, line_data, '-k')
if regression:
axs[i, 0].plot(line_data, regressions[i].predict(line_data))
legend_names.append('Model Regression\n y = %.4f x + %.4f' % (regressions[i].coef_, regressions[i].intercept_))
if show_legend:
axs[i, 0].legend(legend_names)
axs[i, 1].set_title('$\mathregular{v_{%d}}$' % (i), fontsize=title_font_size)
axs[i, 1].set_xlabel(hist_xlabel, fontsize=xlabel_font_size)
axs[i, 1].set_ylabel(hist_ylabel, fontsize=xlabel_font_size)
axs[i, 1].hist(model_components[:, i] - training_components[:, i], bins=bins, edgecolor='black', range=history_range)
# plotting for the global fit
if global_graphs:
legend_names = ['Model', 'y = x']
if regression:
legend_names.append('y = %.4f x + %.4f' % (global_fit.coef_, global_fit.intercept_))
if global_index == 0:
axs[0].set_title('$\mathregular{\\vec{v}}$', fontsize=title_font_size)
axs[0].set_xlabel(line_xlabel, fontsize=xlabel_font_size)
axs[0].set_ylabel(line_ylabel, fontsize=ylabel_font_size)
axs[0].plot(correct, guesses, 'o')
axs[0].plot(line_data, line_data, '-k')
if regression:
axs[0].plot(line_data, global_fit.predict(line_data))
if show_legend:
axs[0].legend(legend_names)
axs[1].set_title('$\mathregular{\\vec{v}}$', fontsize=title_font_size)
axs[1].set_xlabel(hist_xlabel, fontsize=xlabel_font_size)
axs[1].set_ylabel(hist_ylabel, fontsize=xlabel_font_size)
axs[1].hist(guesses - correct, bins=bins, edgecolor='black', range=history_range)
else:
axs[global_index, 0].set_title('$\mathregular{\\vec{v}}$', fontsize=title_font_size)
axs[global_index, 0].set_xlabel(line_xlabel, fontsize=xlabel_font_size)
axs[global_index, 0].set_ylabel(line_ylabel, fontsize=ylabel_font_size)
axs[global_index, 0].plot(correct, guesses, 'o')
axs[global_index, 0].plot(line_data, line_data, '-k')
if regression:
axs[global_index, 0].plot(line_data, global_fit.predict(line_data))
if show_legend:
axs[global_index, 0].legend(legend_names)
axs[global_index, 1].set_title('$\mathregular{\\vec{v}}$', fontsize=title_font_size)
axs[global_index, 1].set_xlabel(hist_xlabel, fontsize=xlabel_font_size)
axs[global_index, 1].set_ylabel(hist_ylabel, fontsize=xlabel_font_size)
axs[global_index, 1].hist(guesses - correct, bins=bins, edgecolor='black',range=history_range)
plt.savefig(file_name, format='pdf', bbox_inches='tight')
plt.show()
def create_model(input_shape, num_output, num_nodes,
num_hidden_layers=1, hidden_layer_activation='relu',
output_activation='linear', optimizer='adam', loss='mse',
metrics=['mse', 'mae'], dropout_rate=0):
''' Method creates a simple Sequential MLP NN with fully connected layers
Args:
input_shape: the shape for the input layer
num_output: the number of velocity components being predicted
num_nodes: the number of node that will be in each hidden layer
num_hidden_layers: the number of hiddens that will be used
hidden_layer_activation: the activation function to be used on all hidden layers
outpt_activation: the activation for the output layer
optimizer: the optimizer that will be used during training
loss: the the loss function that will be used to train the model
metrics: a list of metrics to track model performance
dropout_rate: the dropout rate of node during training to prevent overfitting
Returns:
The NN model compiled and the model summary is displayed
'''
model = Sequential()
model.add(Input(shape=input_shape))
model.add(Dropout(rate=dropout_rate))
for i in range(num_hidden_layers):
model.add(Dense(num_nodes, activation=hidden_layer_activation))
model.add(Dense(num_output, activation=output_activation))
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
model.summary()
return model
def save_model_information(sensitivity_scale_factor,
min_vel, max_vel, num_training_samples,
num_test_samples, nodes_per_layer,
num_hidden_layers, hidden_layer_activation,
epochs, path_to_file, batch_size=None, learning_rate=1e-3,
optimizer='adam', phase_scale_factor=None):
''' Save the paramters used when achieving a set of results for the NN model iteration
Args:
sensitivity_scale_factor: the factor by which the sensitivities will be scaled
min_vel: the minimum velocity used in the training data
max_vel: the mmaximum velocity used in the training data
num_training_samples: the number of velocity profile, sensitivity profiles pairs the model is trained on
num_test_samples: the number velocity profile, sensitivity profiles pairs that are used to validate the model
nodes_per_layer: the number of nodes that each hidden layer has
num_hidden_layers: the number of hidden layers used in the model
hidden_layer_activation: the type of activation function used in the hidden layers
epochs: the number of times the training set is shown to the model
path_to_file: the location where this information is to be saved
batch_size: The batch sized using during training
learning_rate: The learning rate used during training
optimizer: The optimizer used during training
phase_scale_factor: The phase scale factor that should be used when making model predicitions
Returns:
Nothing is returned but a file with the information is created at the location path_to_file
'''
with open(path_to_file, 'w') as f:
f.write('phase_scale_factor = ' + str(phase_scale_factor) + '\n')
f.write('sensitivity_scale_factor = ' + str(sensitivity_scale_factor) + '\n')
f.write('min_vel = ' + str(min_vel) + '\n')
f.write('max_vel = ' + str(max_vel) + '\n')
f.write('num_training_samples = ' + str(num_training_samples) + '\n')
f.write('num_test_samples = ' + str(num_test_samples) + '\n')
f.write('nodes_per_layer = ' + str(nodes_per_layer) + '\n')
f.write('num_hidden_layers = ' + str(num_hidden_layers) + '\n')
f.write('hidden_layer_activation = ' + hidden_layer_activation + '\n')
f.write('num_epochs = ' + str(epochs) + '\n')
f.write('batch_size = ' + str(batch_size) + '\n')
f.write('learning_rate = %E' % learning_rate + '\n')
f.write('optimizer = '+ optimizer)
def show_previous_results(profile_type, regression=True,
component_graphs=True, global_graphs=True,
title_font_size=20, xlabel_font_size=16, ylabel_font_size=16,
bins=50, figsize=None, show_legend=True, hist_range_mag=0.1):
''' Generates plots of the models performance on the validation set after training using the show results function
Args:
profile_type: The profile type that was used to train the model
See plot model results for input descriptions
Returns:
Nothing is returned the plot is diplayed and saved
'''
path_to_results = profile_type + '_Velocity_Results'
path_to_actual = path_to_results + '/eval_velocity_scaled.npy'
path_to_predicition = path_to_results + '/model_velocity.npy'
max_vel = load_model_scaling_factors(profile_type)[-1]
actual_velocities = np.load(path_to_actual) * max_vel
predicted_velocities = np.load(path_to_predicition) * max_vel
plot_model_results(profile_type, actual_velocities, predicted_velocities, path_to_results, regression=regression,
component_graphs=component_graphs, global_graphs=global_graphs,
title_font_size=title_font_size,
xlabel_font_size=xlabel_font_size,
ylabel_font_size=ylabel_font_size,
bins=bins, figsize=figsize,
show_legend=show_legend,
hist_range_mag=hist_range_mag)
def load_model_scaling_factors(profile_type):
''' Method loads the scaling factors needed for use of a given model
Args:
profile_type: the profile type that is used for training the model
Returns:
phase_scale_factor: The scale factor for the phases
sensitivity_scale_factor: The scale factor for the sensitivity
max_vel: The maximum possible velocity in the training set
'''
path_to_results = profile_type + '_Velocity_Results'
path_to_model_params = path_to_results + '/model_params.txt'
with open(path_to_model_params, 'r') as f:
# throw away the phase_scale_factor
phase_scale_factor = f.readline()[len('phase_scale_factor = '):-1]
# throw away sensitivity_scale_factor
sensitivity_scale_factor = f.readline()[len('sensitivity_scale_factor = ' ):-1]
# throw away min_vel
f.readline()
max_vel = float(f.readline()[len('max_vel = ' ):-1])
if 'None' not in phase_scale_factor:
phase_scale_factor = float(phase_scale_factor)
if 'None' not in sensitivity_scale_factor:
sensitivity_scale_factor = float(sensitivity_scale_factor)
return phase_scale_factor, sensitivity_scale_factor, max_vel
def plot_historys(historys, params, param_name=None, validation=True):
''' Plots NN models training models training performance over the course of several different training sets
Args:
historys: an array of the historys of each NN training
params: the values of the parameter that is varried over the course of all training
param_name: The name of parameter that is being varried
validation: An option to plot the validation histories as well as training data
Returns:
Nothing is displayed but histories are plotted in a (1, 2) subplot with mse on the left and mae on the right
'''
fig = plt.figure(figsize=(10, 5))
gs = fig.add_gridspec(1, 2, hspace=0.25)
axs = gs.subplots()
legend_names = []
for i in range(len(historys)):
curr_names = ["Training"]
if validation:
curr_names.append("Validation")
for name in curr_names:
legend_names.append(str(params[i]) + ' ' + name)
axs[0].plot(historys[i].history['mse'], '-o')
if validation:
axs[0].plot(historys[i].history['val_mse'], '-o')
axs[0].set_title('MSE')
axs[0].set_xlabel('Epochs')
axs[0].set_ylabel('Error')
axs[1].plot(historys[i].history['mae'], '-o')
if validation:
axs[1].plot(historys[i].history['val_mae'], '-o')
axs[1].set_title('MAE')
axs[1].set_xlabel('Epochs')
axs[1].set_ylabel('Error')
if param_name is not None:
print(param_name)
print('Final Training MSE ' + str(params[i]) + ': %E' % (historys[i].history['mse'][-1]))
print('Final Validation MSE ' + str(params[i]) + ': %E' % (historys[i].history['val_mse'][-1]))
print('Final Training MAE ' + str(params[i]) + ': %E' % (historys[i].history['mae'][-1]))
print('Final Validation MAE ' + str(params[i]) + ': %E\n\n' % (historys[i].history['val_mae'][-1]))
axs[0].legend(legend_names)
axs[1].legend(legend_names)
plt.show()