-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathECFM_Validation_Helpers.py
309 lines (274 loc) · 16.8 KB
/
ECFM_Validation_Helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import keras
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from ECFM_NN_helpers import get_with_phase_input, load_model_scaling_factors, scale_sensitivty
def magnitude_validation(measured_mag, simulated_mag, frequencies,
title_font_size=24, label_font_size=20,tick_size=14):
''' Performs a comparison between experimentally measured sesnitivity magnitiude and sensitivity
magnitude calculated from simulation
Args:
measured_mag: The experimentally measured senstivity magnitude vector
simulated_mag: The simulated sensitivity magnitude vector
frequencies: The list of frequencies at which the sensitivity was measured/simulated
title_font_size: the font size of the plots title. Default = 24
label_font_size: the font size of the plots x and y axis labels. Default = 20
tick_size: the size of the plots ticks. Default = 14
Returns:
Nothing is returned but a plot containing both the measured and simulated sensitivity is generated.
The plot is then saved as "mag_comparison.pdf"
A table of absolute errors between the two magnitudes is also displayed
'''
plt.figure()
plt.plot(frequencies, measured_mag, 'o-')
plt.plot(frequencies, simulated_mag, 'o-')
plt.title('Measured versus Simulated Magnitude', fontsize=title_font_size)
plt.xlabel('Frequency [Hz]', fontsize=label_font_size)
plt.ylabel('Magnitude [V]', fontsize=label_font_size)
plt.tick_params(axis='x', labelsize=tick_size)
plt.tick_params(axis='y', labelsize=tick_size)
plt.legend(['Measured Magnitude', 'Simulated Magnitude'])
plt.savefig('mag_comparison.pdf', format='pdf', bbox_inches='tight')
plt.show()
mag_errors = np.abs((measured_mag - simulated_mag.reshape(measured_mag.shape)))
for i in range(len(mag_errors)):
print('Frequency Index: {:2d}'.format(i + 1), 'AE [V]: {:2.4E}'.format(mag_errors[i]), 'NAE: {:2.2%}'.format(mag_errors[i] /measured_mag[i]))
print('Global Average AE [V]: {:2.4E}'.format(np.average(mag_errors)), 'NAE: {:2.2%}'.format(np.average(mag_errors / measured_mag.reshape(mag_errors.shape))))
def phase_validation(measured_phase, simulated_phase, frequencies,
title_font_size=24, label_font_size=20,tick_size=14):
''' Performs a comparison between experimentally measured sesnitivity phase and sensitivity phase calculated
from simulation
Args:
measured_phase: The experimentally measured senstivity phase vector
simulated_phase: The simulated sensitivity phase vector
frequencies: The list of frequencies at which the sensitivity was measured/simulated
title_font_size: the font size of the plots title. Default = 24
label_font_size: the font size of the plots x and y axis labels. Default = 20
tick_size: the size of the plots ticks. Default = 14
Returns:
Nothing is returned but a plot containing both the measured and simulated sensitivity is generated.
The plot is then saved as "phase_comparison.pdf" in the current directory
A table of absolute errors between the two phases is also displayed
'''
plt.figure()
plt.plot(frequencies, measured_phase, 'o-')
plt.plot(frequencies, simulated_phase, 'o-')
plt.title('Measured versus Simulated Phase', fontsize=title_font_size)
plt.xlabel('Frequency [Hz]', fontsize=label_font_size)
plt.ylabel('Phase [Radians]', fontsize=label_font_size)
plt.tick_params(axis='x', labelsize=tick_size)
plt.tick_params(axis='y', labelsize=tick_size)
plt.legend(['Measured Phase', 'Simulated Phase'])
plt.savefig('phase_comparison.pdf', format='pdf', bbox_inches='tight')
plt.show()
phase_errors = np.abs((measured_phase - simulated_phase))
for i in range(phase_errors.shape[0]):
print('Frequency Index: {:2d}'.format(i + 1), 'AE [Rad]: {:2.4E}'.format(phase_errors[i][0]), 'NAE: {:2.2%}'.format(phase_errors[i][0] / np.abs(measured_phase[i][0])))
print('Global Average AE [Rad]: {:2.4E}'.format(np.average(phase_errors)), 'NAE: {:2.2%}'.format(np.average(phase_errors / np.abs(measured_phase))))
def sample_actual_profile(actual_rad, actual_vel, wanted_rad):
''' Given a more complete velocity profile this function samples it at the location the NN model is trained to predict
Behaviour is undefined if all positions in wanted_rad are contained by actual_rad
Args:
actual_rad: The radial positions of the velocities in the actual_vel profile
actual_vel: The velocity profile that is being sampled
wanted_rad: The positions at which you want to sample the actual_vel profile
Returns:
The velocity profile sampled at each location in wanted_rad
'''
sample_profile = np.zeros((wanted_rad.shape[0], 1))
for i in range(wanted_rad.shape[0]):
rad_below = [x for x in actual_rad if x<=wanted_rad[i]][-1]
rad_above = [x for x in actual_rad if x>wanted_rad[i]][0]
idx_below = np.where(actual_rad == rad_below)[0][0]
idx_above = np.where(actual_rad == rad_above)[0][0]
vel_above = actual_vel[idx_below]
vel_below = actual_vel[idx_above]
slope = (vel_below - vel_above) / (rad_below - rad_above)
sample_profile[i] = slope * (rad_above - wanted_rad[i]) + vel_below
return sample_profile
def get_path_to_model(profile_type):
''' Gets the location where model information is stored
Args:
profile_type: The type of profile used to train the model
Returns:
path_to_model: The location where the model is stored
path_to_params: The location where the model_params are stored
'''
path_to_results = profile_type + '_Velocity_Results/'
path_to_model = path_to_results + profile_type + '_Model'
path_to_params = path_to_results + 'model_params.txt'
return path_to_model, path_to_params
def print_model_error(profile_type, actual_profile, model_profile):
''' Prints the errors in the model predictions when performing validation
Args:
profile_type: The type of velocity profile used to train the NN
actual_profile: The velocity profile used as a baseline
model_profile: The profile predicted by the model
'''
print('Actual Error in the', profile_type, 'model')
error_sum = 0
normalized_sum = 0
max_error = 0
nmax_error = 0
max_component = 0;
for i in range(len(actual_profile)):
error = np.abs(actual_profile[i] - model_profile[i])
normalized_error = error / actual_profile[i]
if normalized_error >= nmax_error:
max_error = error[0]
nmax_error = normalized_error[0]
max_component = i
error_sum += error[0]
normalized_sum += normalized_error[0]
print('Component:', i, 'MAE: {:.2f} m/s'.format(error[0]), 'NMAE: {:.0%}'.format(normalized_error[0]))
print('Average Error in profile MAE: {:.2f} m/s'.format(error_sum / len(actual_profile)), 'NMAE: {:.0%}'.format(normalized_sum / len(actual_profile)))
print('Max Error Component:', max_component, ' MAE: {:.2f} m/s'.format(max_error), 'NMAE: {:.0%}'.format(nmax_error))
print()
print()
def model_validation(profile_type, actual_profile, actual_rad_pos, model_rad_pos, actual_sensitivity,
title_font_size=24,
label_font_size=20,
tick_size=14,
num_samples=1000, error_factor=0.05, figsize=(5, 5)):
''' Compares the models predicted velocity profile to one generated via CFD simulation. Monte Carlo uncertainty
analysis is then performed adding noise to the sensitivity only
Args:
profile_type: the name of the profile used to train the DNN model.
actual_profile: the velocity profile that the model should be trying to predict
actual_rad_pos: the radial position vector for the target velocity profile
model_rad_pos: the radial positions where the model predicts velocity profiles
actual_sensitivity: The measured sensitivity for the given actual velocity profile
title_font_size: the font size of the plots title. Default = 24
label_font_size: the font size of the plots x and y axis labels. Default = 20
tick_size: the size of the plots ticks. Default = 14
num_samples: the number of sensitivity profiles used in the monte carlo anlysis. Default = 1000
error_factor: the percentage of noise added to the sensitivity profile. Default = 0.05
figsize: the size of the pdf that is generated. Default = (5, 5)
Returns:
No value is returned but a plot of the given profile and model guesses with error bars is generated.
A table of RMSE and NRMSE is generated for the monte carlo analysis
A table of AE and NAE is generated for the models predictions with the given sensitivity profile
'''
path_to_model = get_path_to_model(profile_type)[0]
sensitivity_scale_factor, max_vel = load_model_scaling_factors(profile_type)[1:3]
sensitivity_scaled = scale_sensitivty(actual_sensitivity, scale_factor=sensitivity_scale_factor)[0]
model = keras.models.load_model(path_to_model)
base_case = model.predict(sensitivity_scaled.reshape(1, len(sensitivity_scaled), 1)).reshape(-1,)
base_case *= max_vel
noisy_sensitivity = np.zeros((num_samples, len(actual_sensitivity), 1))
velocity_profiles = np.zeros((num_samples, len(model_rad_pos), 1))
velocity_profile = sample_actual_profile(actual_rad_pos, actual_profile, model_rad_pos)
for i in range(num_samples):
velocity_profiles[i] = velocity_profile
for i in range(len(actual_sensitivity)):
noisy_sensitivity[:, i] = np.random.normal(actual_sensitivity[i], error_factor * actual_sensitivity[i], num_samples).reshape(-1, 1)
noisy_profiles_scaled = model.predict(noisy_sensitivity / sensitivity_scale_factor)
velocity_predictions = noisy_profiles_scaled * max_vel
errors = np.zeros((len(model_rad_pos)))
normalized_errors = np.zeros((len(model_rad_pos)))
print('Monte Carlo Uncertainty Quantification')
max_error = 0
nmax_error = 0
max_idx = 0
for i in range(velocity_predictions.shape[1]):
errors[i] = np.sqrt(mean_squared_error(velocity_profiles[:, i], velocity_predictions[:, i]))
normalized_errors[i] = errors[i] / actual_profile[i]
print('component:', i, 'RMSE: {:.2f} m/s'.format( errors[i]), 'NRMSE: {:.0%}'.format(normalized_errors[i]))
if nmax_error <= normalized_errors[i]:
nmax_error = normalized_errors[i]
max_error = errors[i]
max_idx = i
print('Max Error Component:', max_idx, 'RMSE: {:.2f} m/s'.format(max_error), 'NRMSE: {:.0%}'.format(nmax_error))
plt.figure(figsize=figsize)
plt.plot(actual_rad_pos, actual_profile, '-k')
plt.title(profile_type.replace('_With_Phase', '') + ' Model Validation', fontsize=title_font_size)
plt.xlabel('Radial Position [m]', fontsize=label_font_size)
plt.ylabel('Velocity [m/s]', fontsize=label_font_size)
plt.tick_params(axis='x', labelsize=tick_size)
plt.tick_params(axis='y', labelsize=tick_size)
plt.plot(model_rad_pos, base_case, '-o', color='C01')
plt.fill_between(model_rad_pos, velocity_profile.reshape(-1,) - errors, velocity_profile.reshape(-1,) + errors)
plt.legend(['CFD', 'DNN'])
file_name = profile_type + '_Velocity_Results/' + profile_type + '_Validation_plot.pdf'
plt.savefig(file_name, format='pdf', bbox_inches='tight')
plt.show()
print_model_error(profile_type, sample_actual_profile(actual_rad_pos, actual_profile, model_rad_pos), base_case)
def model_validation_with_phase(profile_type, actual_profile, actual_rad_pos, model_rad_pos,
actual_sensitivity, actual_phase,
title_font_size=24,
label_font_size=20,
tick_size=14,
num_samples=1000, error_factor=0.05, figsize=(5, 5)):
''' Compares the models predicted velocity profile to one generated via CFD simulation. Monte Carlo uncertainty
analysis is then performed adding noise to the sensitivity only
Args:
profile_type: the name of the profile used to train the DNN model.
actual_profile: the velocity profile that the model should be trying to predict
actual_rad_pos: the radial position vector for the target velocity profile
model_rad_pos: the radial positions where the model predicts velocity profiles
actual_sensitivity: The measured sensitivity for the given actual velocity profile
actual_phase: The measured phase for the given velocity profile
title_font_size: the font size of the plots title. Default = 24
label_font_size: the font size of the plots x and y axis labels. Default = 20
tick_size: the size of the plots ticks. Default = 14
num_samples: the number of sensitivity profiles used in the monte carlo anlysis. Default = 1000
error_factor: the percentage of noise added to the sensitivity profile. Default = 0.05
figsize: the size of the pdf that is generated. Default = (5, 5)
Returns:
No value is returned but a plot of the given profile and model guesses with error bars is generated.
A table of RMSE and NRMSE is generated for the monte carlo analysis
A table of AE and NAE is generated for the models predictions with the given sensitivity profile
'''
path_to_model = get_path_to_model(profile_type)[0]
phase_scale_factor, sensitivity_scale_factor, max_vel = load_model_scaling_factors(profile_type)
scaled_input = get_with_phase_input(actual_sensitivity.reshape(1, -1, 1), actual_phase.reshape(1, -1, 1),
sensitivity_scale_factor=sensitivity_scale_factor,
phase_scale_factor=phase_scale_factor)[0]
model = keras.models.load_model(path_to_model)
base_case = model.predict(scaled_input).reshape(-1,)
base_case *= max_vel
noisy_sensitivity = np.zeros((num_samples, len(actual_sensitivity), 1))
phases = np.zeros((num_samples, len(actual_sensitivity), 1))
velocity_profiles = np.zeros((num_samples, len(model_rad_pos), 1))
velocity_profile = sample_actual_profile(actual_rad_pos, actual_profile, model_rad_pos)
for i in range(num_samples):
velocity_profiles[i] = velocity_profile
phases[i] = actual_phase
for i in range(len(actual_sensitivity)):
noisy_sensitivity[:, i] = np.random.normal(actual_sensitivity[i], error_factor * actual_sensitivity[i], num_samples).reshape(-1, 1)
scaled_input = get_with_phase_input(noisy_sensitivity, phases,
sensitivity_scale_factor=sensitivity_scale_factor,
phase_scale_factor=phase_scale_factor)[0]
noisy_profiles_scaled = model.predict(scaled_input)
velocity_predictions = noisy_profiles_scaled * max_vel
errors = np.zeros((len(model_rad_pos)))
normalized_errors = np.zeros((len(model_rad_pos)))
print('Monte Carlo Uncertainty Quantification')
max_error = 0
nmax_error = 0
max_idx = 0
for i in range(velocity_predictions.shape[1]):
errors[i] = np.sqrt(mean_squared_error(velocity_profiles[:, i], velocity_predictions[:, i]))
normalized_errors[i] = errors[i] / actual_profile[i]
print('component:', i, 'RMSE: {:.2f} m/s'.format( errors[i]), 'NRMSE: {:.0%}'.format(normalized_errors[i]))
if nmax_error <= normalized_errors[i]:
nmax_error = normalized_errors[i]
max_error = errors[i]
max_idx = i
print('Max Error Component:', max_idx, 'RMSE: {:.2f} m/s'.format(max_error), 'NRMSE: {:.0%}'.format(nmax_error))
plt.figure(figsize=figsize)
plt.plot(actual_rad_pos * 100, actual_profile, '-k')
plt.title(profile_type.replace('_With_Phase', '') + ' Model Validation', fontsize=title_font_size)
plt.xlabel('Radial Position [cm]', fontsize=label_font_size)
plt.ylabel('Velocity [m/s]', fontsize=label_font_size)
plt.tick_params(axis='x', labelsize=tick_size)
plt.tick_params(axis='y', labelsize=tick_size)
plt.plot(model_rad_pos * 100, base_case, '-o', color='C01')
plt.fill_between(model_rad_pos * 100, velocity_profile.reshape(-1,) - errors, velocity_profile.reshape(-1,) + errors)
plt.legend(['CFD', 'DNN'], fontsize=16)
plt.tick_params(axis='x', labelsize=14)
plt.tick_params(axis='y', labelsize=14)
file_name = profile_type + '_Velocity_Results/' + profile_type + '_Validation_plot.pdf'
plt.savefig(file_name, format='pdf', bbox_inches='tight')
plt.show()
print_model_error(profile_type, sample_actual_profile(actual_rad_pos, actual_profile, model_rad_pos), base_case)