forked from stdlib-js/stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
81 lines (75 loc) · 2.45 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/math/base/special/ceilsd.h"
#include "stdlib/math/base/assert/is_nan.h"
#include "stdlib/math/base/assert/is_infinite.h"
#include "stdlib/math/base/special/pow.h"
#include "stdlib/math/base/special/log10.h"
#include "stdlib/math/base/special/ln.h"
#include "stdlib/math/base/special/abs.h"
#include "stdlib/math/base/special/floor.h"
#include "stdlib/math/base/special/ceil.h"
#include "stdlib/number/float64/base/exponent.h"
#include <stdint.h>
/**
* Rounds a numeric value to the nearest number toward positive infinity with \\(n\\) significant figures.
*
* @param x input value
* @param n number of significant figures
* @param b base
* @return rounded value
*
* @example
* double out = stdlib_base_ceilsd( 3.141592653589793, 5, 10 );
* // returns 3.1416
*/
double stdlib_base_ceilsd( const double x, const int32_t n, const int32_t b ) {
double exp;
double s;
double y;
if ( stdlib_base_is_nan( x ) || n < 1 || b <= 0 ) {
return 0.0 / 0.0; // NaN
}
if ( stdlib_base_is_infinite( x ) || x == 0.0 ) {
return x;
}
if ( b == 10 ) {
exp = stdlib_base_log10( stdlib_base_abs( x ) );
} else if ( b == 2 ) {
exp = stdlib_base_float64_exponent( stdlib_base_abs( x ) );
} else {
exp = stdlib_base_ln( stdlib_base_abs( x ) ) / stdlib_base_ln( (double)b );
}
exp = stdlib_base_floor( exp - (double)n + 1.0 );
s = stdlib_base_pow( (double)b, stdlib_base_abs( exp ) );
// Check for overflow:
if ( stdlib_base_is_infinite( s ) ) {
return x;
}
// To avoid numerical stability issues due to floating-point rounding error (e.g., 3.55/0.1-35.5 = -7.105427357601e-15 and 3.55*10-35.5 = 0), we must treat positive and negative exponents separately.
if ( exp < 0 ) {
y = stdlib_base_ceil( x * s ) / s;
} else {
y = stdlib_base_ceil( x / s ) * s;
}
// Check for overflow:
if ( stdlib_base_is_infinite( y ) ) {
return x;
}
return y;
}