forked from stdlib-js/stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
271 lines (248 loc) · 7.92 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link https://www.boost.org/doc/libs/1_85_0/boost/math/special_functions/digamma.hpp}. The implementation follows the original but has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
#include "stdlib/math/base/special/digamma.h"
#include "stdlib/math/base/assert/is_nan.h"
#include "stdlib/math/base/special/floor.h"
#include "stdlib/math/base/special/tan.h"
#include "stdlib/math/base/special/ln.h"
#include "stdlib/constants/float64/pi.h"
static const double MIN_SAFE_ASYMPTOTIC = 10.0; // BIG!
static const double root1 = 1569415565.0 / 1073741824.0;
static const double root2 = ( 381566830.0 / 1073741824.0 ) / 1073741824.0;
static const double root3 = 0.9016312093258695918615325266959189453125e-19;
static const double Y = 0.99558162689208984;
/* Begin auto-generated functions. The following functions are auto-generated. Do not edit directly. */
// BEGIN: polyval_p
/**
* Evaluates a polynomial.
*
* ## Notes
*
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @param x value at which to evaluate the polynomial
* @return evaluated polynomial
*/
static double polyval_p( const double x ) {
return 0.08333333333333333 + (x * (-0.008333333333333333 + (x * (0.003968253968253968 + (x * (-0.004166666666666667 + (x * (0.007575757575757576 + (x * (-0.021092796092796094 + (x * (0.08333333333333333 + (x * -0.4432598039215686)))))))))))));
}
// END: polyval_p
// BEGIN: rational_pq
/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* - Coefficients should be sorted in ascending degree.
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @param x value at which to evaluate the rational function
* @return evaluated rational function
*/
static double rational_pq( const double x ) {
double ax;
double ix;
double s1;
double s2;
if ( x == 0.0 ) {
return 0.25479851061131553;
}
if ( x < 0.0 ) {
ax = -x;
} else {
ax = x;
}
if ( ax <= 1.0 ) {
s1 = 0.25479851061131553 + (x * (-0.3255503118680449 + (x * (-0.6503185377089651 + (x * (-0.28919126444774784 + (x * (-0.04525132144873906 + (x * (-0.002071332116774595 + (x * 0.0)))))))))));
s2 = 1.0 + (x * (2.076711702373047 + (x * (1.4606242909763516 + (x * (0.43593529692665967 + (x * (0.054151797245674226 + (x * (0.0021284987017821146 + (x * -5.578984132167551e-7)))))))))));
} else {
ix = 1.0 / x;
s1 = 0.0 + (ix * (-0.002071332116774595 + (ix * (-0.04525132144873906 + (ix * (-0.28919126444774784 + (ix * (-0.6503185377089651 + (ix * (-0.3255503118680449 + (ix * 0.25479851061131553)))))))))));
s2 = -5.578984132167551e-7 + (ix * (0.0021284987017821146 + (ix * (0.054151797245674226 + (ix * (0.43593529692665967 + (ix * (1.4606242909763516 + (ix * (2.076711702373047 + (ix * 1.0)))))))))));
}
return s1 / s2;
}
// END: rational_pq
/* End auto-generated functions. */
/**
* Evaluates the digamma function via asymptotic expansion.
*
* @param x input value
* @returns function value
*/
static double asymptoticApprox( const double x ) {
double y;
double z;
double xc;
xc = x;
xc -= 1.0;
y = stdlib_base_ln( xc ) + ( 1.0 / ( 2.0 * xc ) );
z = 1.0 / ( xc * xc );
return y - ( z * polyval_p( z ) );
}
/**
* Evaluates the digamma function over interval `[1,2]`.
*
* @param x input value
* @returns function value
*/
static double rationalApprox( const double x ) {
double g;
double r;
g = x - root1;
g -= root2;
g -= root3;
r = rational_pq( x - 1.0 );
return ( g * Y ) + ( g * r );
}
/**
* Evaluates the digamma function.
*
* ## Method
*
* 1. For \\(x < 0\\), we use the reflection formula
*
* ```tex
* \psi(1-x) = \psi(x) + \frac{\pi}{\tan(\pi x)}
* ```
*
* to make \\(x\\) positive.
*
* 2. For \\(x \in \[0,1]\\), we use the recurrence relation
*
* ```tex
* \psi(x) = \psi(x+1) - \frac{1}{x}
* ```
*
* to shift the evaluation range to \\(\[1,2]\\).
*
* 3. For \\(x \in \[1,2]\\), we use a rational approximation of the form
*
* ```tex
* \psi(x) = (x - \mathrm{root})(Y + \operatorname{R}(x-1))
* ```
*
* where \\(\mathrm{root}\\) is the location of the positive root of \\(\psi\\), \\(Y\\) is a constant, and \\(R\\) is optimized for low absolute error compared to \\(Y\\).
*
* <!-- <note>-->
*
* Note that, since \\(\mathrm{root}\\) is irrational, we need twice as many digits in \\(\mathrm{root}\\) as in \\(x\\) in order to avoid cancellation error during subtraction, assuming \\(x\\) has an exact value. This means that, even if \\(x\\) is rounded to the next representable value, the result of \\(\psi(x)\\) will not be zero.
*
* <!-- </note> -->
*
* <!-- <note> -->
*
* This approach gives 17-digit precision.
*
* <!-- </note> -->
*
* 4. For \\(x \in \[2,\mathrm{BIG}]\\), we use the recurrence relation
*
* ```tex
* \psi(x+1) = \psi(x) + \frac{1}{x}
* ```
*
* to shift the evaluation range to \\(\[1,2]\\).
*
* 5. For \\(x > \mathrm{BIG}\\), we use the asymptotic expression
*
* ```tex
* \psi(x) = \ln(x) + \frac{1}{2x} - \biggl( \frac{B_{21}}{2x^2} + \frac{B_{22}}{4x^4} + \frac{B_{23}}{6x^6} + \ldots \biggr)
* ```
*
* This expansion, however, is divergent after a few terms. The number of terms depends on \\(x\\). Accordingly, we must choose a value of \\(\mathrm{BIG}\\) which allows us to truncate the series at a term that is too small to have an effect on the result. Setting \\(\mathrm{BIG} = 10\\), allows us to truncate the series early and evaluate as \\(1/x^2\\).
*
* <!-- <note> -->
*
* This approach gives 17-digit precision for \\(x \geq 10\\).
*
* <!-- </note> -->
*
* ## Notes
*
* - Maximum deviation found: \\(1.466\\mbox{e-}18\\)
* - Max error found: \\(2.452\mbox{e-}17\\) (double precision)
*
* @param x input value
* @returns function value
*
* @example
* double v = stdlib_base_digamma( -2.5 );
* // returns ~1.103
*/
double stdlib_base_digamma( const double x ) {
double rem;
double tmp;
double xc;
if ( stdlib_base_is_nan( x ) || x == 0.0 ) {
return 0.0 / 0.0; // NaN
}
// If `x` is negative, use reflection...
xc = x;
if ( xc <= -1.0 ) {
// Reflect:
xc = 1.0 - xc;
// Argument reduction for tan:
rem = xc - stdlib_base_floor( xc );
// Shift to negative if > 0.5:
if ( rem > 0.5 ) {
rem -= 1.0;
}
// Check for evaluation at a negative pole:
if ( rem == 0.0 ) {
return 0.0 / 0.0; // NaN
}
tmp = STDLIB_CONSTANT_FLOAT64_PI / stdlib_base_tan( STDLIB_CONSTANT_FLOAT64_PI * rem );
} else {
tmp = 0.0;
}
// If we're above the lower-limit for the asymptotic expansion, then use it...
if ( xc >= MIN_SAFE_ASYMPTOTIC ) {
tmp += asymptoticApprox( xc );
return tmp;
}
// If x > 2, reduce to the interval [1,2]...
while ( xc > 2.0 ) {
xc -= 1.0;
tmp += 1.0 / xc;
}
// If x < 1, use recurrence to shift to > 1..
while ( xc < 1.0 ) {
tmp -= 1.0 / xc;
xc += 1.0;
}
tmp += rationalApprox( xc );
return tmp;
}