Skip to content

Latest commit

 

History

History
100 lines (68 loc) · 2.5 KB

README.md

File metadata and controls

100 lines (68 loc) · 2.5 KB

Invisibility Cloak OpenCV with Deep Learning

Invisibility Cloak Project

Computer Vision with OpenCV

Graduation Project in 2021 Fall Semester @UNIST

For this project, FGVC(Flow-edge Guided Video Completion) deep learning model was used for object removal.

Result

Environment

Package Version
anaconda (x64) 4.10.3
cuda 10.2.89
matplotlib 3.4.3
numpy 1.21.4
opencv 4.5.4
os Windows 10
pip 21.0.1
python 3.8.12
pytorch 1.6.0
scipy 1.6.2

Usage

Install

$ conda create -n (name)
$ conda activate (name)
$ conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
$ pip install matplotlib scipy opencv imageio imageio-ffmpeg scikit-image imutils

Run Project

  • Download and unzip weight.zip into the modules.
  • Prepare video sequences dataset of color and mask for project. (Data Samples : tennis | f250)
  • Run project
# Remove __pycache__ if you want.
$ find . | grep -E "(__pycache__|\.pyc|\.pyo$)" | xargs rm -rf

# Run video inpainting.
$ python run_inpainting.py \
> --path      './data/tennis_color' \
> --path_mask './data/tennis_mask' \
> --outroot   './data/tennis_result' \
> --merge \
> --run

Update History

v1.3

  • Add to remove object with FGVC
  • Set the main cloak color with RED
  • Update cloak mask and noise.
  • Rename ftn -> image_stack.

v1.2

  • Add to save output video.
  • Add color selection mode : RED || GREEN
  • Get object removal result by FGVC.

v1.1

  • Add specific noise filtering conditions.
  • Modify detected color : RED -> GREEN

v1.0

  • Project first commit.
  • Test module ftn for showing image stack view.
  • Test HSV Detector using track bar.
  • Test Invisibility Cloak Demo.


Updated : 2021-11-28 00:19