-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmiddle2r.c
807 lines (734 loc) · 28.9 KB
/
middle2r.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
/*
* Date: 11 December 2015
* Contact: Thomas Peyrin - [email protected]
*/
/*
* Simmulation of boomerang analysis for Skinny
* Date: March 21, 2020
* Author: Hosein Hadipour
* Contact: [email protected]
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <omp.h>
#include <stdbool.h>
// #define DEBUG 1
#define Nthreads 1
// Table that encodes the parameters of the various Skinny versions:
// (block size, key size, number of rounds)
//Skinny-64-64: 32 rounds
//Skinny-64-128: 36 rounds
//Skinny-64-192: 40 rounds
//Skinny-128-128: 40 rounds
//Skinny-128-256: 48 rounds
//Skinny-128-384: 56 rounds
int versions[6][3] = {{64, 64, 32}, {64, 128, 36}, {64, 192, 40}, {128, 128, 40}, {128, 256, 48}, {128, 384, 56}};
// Packing of data is done as follows (state[i][j] stands for row i and column j):
// 0 1 2 3
// 4 5 6 7
// 8 9 10 11
//12 13 14 15
// 4-bit Sbox
const unsigned char sbox_4[16] = {12, 6, 9, 0, 1, 10, 2, 11, 3, 8, 5, 13, 4, 14, 7, 15};
const unsigned char sbox_4_inv[16] = {3, 4, 6, 8, 12, 10, 1, 14, 9, 2, 5, 7, 0, 11, 13, 15};
// 8-bit Sbox
const unsigned char sbox_8[256] = {0x65, 0x4c, 0x6a, 0x42, 0x4b, 0x63, 0x43, 0x6b, 0x55, 0x75, 0x5a, 0x7a, 0x53, 0x73, 0x5b, 0x7b, 0x35, 0x8c, 0x3a, 0x81, 0x89, 0x33, 0x80, 0x3b, 0x95, 0x25, 0x98, 0x2a, 0x90, 0x23, 0x99, 0x2b, 0xe5, 0xcc, 0xe8, 0xc1, 0xc9, 0xe0, 0xc0, 0xe9, 0xd5, 0xf5, 0xd8, 0xf8, 0xd0, 0xf0, 0xd9, 0xf9, 0xa5, 0x1c, 0xa8, 0x12, 0x1b, 0xa0, 0x13, 0xa9, 0x05, 0xb5, 0x0a, 0xb8, 0x03, 0xb0, 0x0b, 0xb9, 0x32, 0x88, 0x3c, 0x85, 0x8d, 0x34, 0x84, 0x3d, 0x91, 0x22, 0x9c, 0x2c, 0x94, 0x24, 0x9d, 0x2d, 0x62, 0x4a, 0x6c, 0x45, 0x4d, 0x64, 0x44, 0x6d, 0x52, 0x72, 0x5c, 0x7c, 0x54, 0x74, 0x5d, 0x7d, 0xa1, 0x1a, 0xac, 0x15, 0x1d, 0xa4, 0x14, 0xad, 0x02, 0xb1, 0x0c, 0xbc, 0x04, 0xb4, 0x0d, 0xbd, 0xe1, 0xc8, 0xec, 0xc5, 0xcd, 0xe4, 0xc4, 0xed, 0xd1, 0xf1, 0xdc, 0xfc, 0xd4, 0xf4, 0xdd, 0xfd, 0x36, 0x8e, 0x38, 0x82, 0x8b, 0x30, 0x83, 0x39, 0x96, 0x26, 0x9a, 0x28, 0x93, 0x20, 0x9b, 0x29, 0x66, 0x4e, 0x68, 0x41, 0x49, 0x60, 0x40, 0x69, 0x56, 0x76, 0x58, 0x78, 0x50, 0x70, 0x59, 0x79, 0xa6, 0x1e, 0xaa, 0x11, 0x19, 0xa3, 0x10, 0xab, 0x06, 0xb6, 0x08, 0xba, 0x00, 0xb3, 0x09, 0xbb, 0xe6, 0xce, 0xea, 0xc2, 0xcb, 0xe3, 0xc3, 0xeb, 0xd6, 0xf6, 0xda, 0xfa, 0xd3, 0xf3, 0xdb, 0xfb, 0x31, 0x8a, 0x3e, 0x86, 0x8f, 0x37, 0x87, 0x3f, 0x92, 0x21, 0x9e, 0x2e, 0x97, 0x27, 0x9f, 0x2f, 0x61, 0x48, 0x6e, 0x46, 0x4f, 0x67, 0x47, 0x6f, 0x51, 0x71, 0x5e, 0x7e, 0x57, 0x77, 0x5f, 0x7f, 0xa2, 0x18, 0xae, 0x16, 0x1f, 0xa7, 0x17, 0xaf, 0x01, 0xb2, 0x0e, 0xbe, 0x07, 0xb7, 0x0f, 0xbf, 0xe2, 0xca, 0xee, 0xc6, 0xcf, 0xe7, 0xc7, 0xef, 0xd2, 0xf2, 0xde, 0xfe, 0xd7, 0xf7, 0xdf, 0xff};
const unsigned char sbox_8_inv[256] = {0xac, 0xe8, 0x68, 0x3c, 0x6c, 0x38, 0xa8, 0xec, 0xaa, 0xae, 0x3a, 0x3e, 0x6a, 0x6e, 0xea, 0xee, 0xa6, 0xa3, 0x33, 0x36, 0x66, 0x63, 0xe3, 0xe6, 0xe1, 0xa4, 0x61, 0x34, 0x31, 0x64, 0xa1, 0xe4, 0x8d, 0xc9, 0x49, 0x1d, 0x4d, 0x19, 0x89, 0xcd, 0x8b, 0x8f, 0x1b, 0x1f, 0x4b, 0x4f, 0xcb, 0xcf, 0x85, 0xc0, 0x40, 0x15, 0x45, 0x10, 0x80, 0xc5, 0x82, 0x87, 0x12, 0x17, 0x42, 0x47, 0xc2, 0xc7, 0x96, 0x93, 0x03, 0x06, 0x56, 0x53, 0xd3, 0xd6, 0xd1, 0x94, 0x51, 0x04, 0x01, 0x54, 0x91, 0xd4, 0x9c, 0xd8, 0x58, 0x0c, 0x5c, 0x08, 0x98, 0xdc, 0x9a, 0x9e, 0x0a, 0x0e, 0x5a, 0x5e, 0xda, 0xde, 0x95, 0xd0, 0x50, 0x05, 0x55, 0x00, 0x90, 0xd5, 0x92, 0x97, 0x02, 0x07, 0x52, 0x57, 0xd2, 0xd7, 0x9d, 0xd9, 0x59, 0x0d, 0x5d, 0x09, 0x99, 0xdd, 0x9b, 0x9f, 0x0b, 0x0f, 0x5b, 0x5f, 0xdb, 0xdf, 0x16, 0x13, 0x83, 0x86, 0x46, 0x43, 0xc3, 0xc6, 0x41, 0x14, 0xc1, 0x84, 0x11, 0x44, 0x81, 0xc4, 0x1c, 0x48, 0xc8, 0x8c, 0x4c, 0x18, 0x88, 0xcc, 0x1a, 0x1e, 0x8a, 0x8e, 0x4a, 0x4e, 0xca, 0xce, 0x35, 0x60, 0xe0, 0xa5, 0x65, 0x30, 0xa0, 0xe5, 0x32, 0x37, 0xa2, 0xa7, 0x62, 0x67, 0xe2, 0xe7, 0x3d, 0x69, 0xe9, 0xad, 0x6d, 0x39, 0xa9, 0xed, 0x3b, 0x3f, 0xab, 0xaf, 0x6b, 0x6f, 0xeb, 0xef, 0x26, 0x23, 0xb3, 0xb6, 0x76, 0x73, 0xf3, 0xf6, 0x71, 0x24, 0xf1, 0xb4, 0x21, 0x74, 0xb1, 0xf4, 0x2c, 0x78, 0xf8, 0xbc, 0x7c, 0x28, 0xb8, 0xfc, 0x2a, 0x2e, 0xba, 0xbe, 0x7a, 0x7e, 0xfa, 0xfe, 0x25, 0x70, 0xf0, 0xb5, 0x75, 0x20, 0xb0, 0xf5, 0x22, 0x27, 0xb2, 0xb7, 0x72, 0x77, 0xf2, 0xf7, 0x2d, 0x79, 0xf9, 0xbd, 0x7d, 0x29, 0xb9, 0xfd, 0x2b, 0x2f, 0xbb, 0xbf, 0x7b, 0x7f, 0xfb, 0xff};
// ShiftAndSwitchRows permutation
const unsigned char P[16] = {0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12};
const unsigned char P_inv[16] = {0, 1, 2, 3, 5, 6, 7, 4, 10, 11, 8, 9, 15, 12, 13, 14};
// Tweakey permutation
const unsigned char TWEAKEY_P[16] = {9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7};
const unsigned char TWEAKEY_P_inv[16] = {8, 9, 10, 11, 12, 13, 14, 15, 2, 0, 4, 7, 6, 3, 5, 1};
// round constants
const unsigned char RC[62] = {
0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F,
0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E, 0x1D, 0x3A, 0x35, 0x2B,
0x16, 0x2C, 0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E,
0x1C, 0x38, 0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A,
0x34, 0x29, 0x12, 0x24, 0x08, 0x11, 0x22, 0x04, 0x09, 0x13,
0x26, 0x0c, 0x19, 0x32, 0x25, 0x0a, 0x15, 0x2a, 0x14, 0x28,
0x10, 0x20};
FILE *fic;
void display_matrix(unsigned char state[4][4], int ver)
{
int i;
unsigned char input[16];
if (versions[ver][0] == 64)
{
for (i = 0; i < 8; i++)
input[i] = ((state[(2 * i) >> 2][(2 * i) & 0x3] & 0xF) << 4) | (state[(2 * i + 1) >> 2][(2 * i + 1) & 0x3] & 0xF);
for (i = 0; i < 8; i++)
fprintf(fic, "%02x", input[i]);
}
else if (versions[ver][0] == 128)
{
for (i = 0; i < 16; i++)
input[i] = state[i >> 2][i & 0x3] & 0xFF;
for (i = 0; i < 16; i++)
fprintf(fic, "%02x", input[i]);
}
}
void display_cipher_state(unsigned char state[4][4], unsigned char keyCells[3][4][4], int ver)
{
int k;
fprintf(fic, "S = ");
display_matrix(state, ver);
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
fprintf(fic, " - TK%i = ", k + 1);
display_matrix(keyCells[k], ver);
}
}
// Extract and apply the subtweakey to the internal state (must be the two top rows XORed together), then update the tweakey state
void AddKey(unsigned char state[4][4], unsigned char keyCells[3][4][4], int ver)
{
int i, j, k;
unsigned char pos;
unsigned char keyCells_tmp[3][4][4];
// apply the subtweakey to the internal state
for (i = 0; i <= 1; i++)
{
for (j = 0; j < 4; j++)
{
state[i][j] ^= keyCells[0][i][j];
if (2 * versions[ver][0] == versions[ver][1])
state[i][j] ^= keyCells[1][i][j];
else if (3 * versions[ver][0] == versions[ver][1])
state[i][j] ^= keyCells[1][i][j] ^ keyCells[2][i][j];
}
}
// update the subtweakey states with the permutation
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
//application of the TWEAKEY permutation
pos = TWEAKEY_P[j + 4 * i];
keyCells_tmp[k][i][j] = keyCells[k][pos >> 2][pos & 0x3];
}
}
}
// update the subtweakey states with the LFSRs
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
for (i = 0; i <= 1; i++)
{
for (j = 0; j < 4; j++)
{
//application of LFSRs for TK updates
if (k == 1)
{
if (versions[ver][0] == 64)
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] << 1) & 0xE) ^ ((keyCells_tmp[k][i][j] >> 3) & 0x1) ^ ((keyCells_tmp[k][i][j] >> 2) & 0x1);
else
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] << 1) & 0xFE) ^ ((keyCells_tmp[k][i][j] >> 7) & 0x01) ^ ((keyCells_tmp[k][i][j] >> 5) & 0x01);
}
else if (k == 2)
{
if (versions[ver][0] == 64)
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] >> 1) & 0x7) ^ ((keyCells_tmp[k][i][j]) & 0x8) ^ ((keyCells_tmp[k][i][j] << 3) & 0x8);
else
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] >> 1) & 0x7F) ^ ((keyCells_tmp[k][i][j] << 7) & 0x80) ^ ((keyCells_tmp[k][i][j] << 1) & 0x80);
}
}
}
}
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
keyCells[k][i][j] = keyCells_tmp[k][i][j];
}
}
}
}
// Extract and apply the subtweakey to the internal state (must be the two top rows XORed together), then update the tweakey state (inverse function}
void AddKey_inv(unsigned char state[4][4], unsigned char keyCells[3][4][4], int ver)
{
int i, j, k;
unsigned char pos;
unsigned char keyCells_tmp[3][4][4];
// update the subtweakey states with the permutation
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
//application of the inverse TWEAKEY permutation
pos = TWEAKEY_P_inv[j + 4 * i];
keyCells_tmp[k][i][j] = keyCells[k][pos >> 2][pos & 0x3];
}
}
}
// update the subtweakey states with the LFSRs
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
for (i = 2; i <= 3; i++)
{
for (j = 0; j < 4; j++)
{
//application of inverse LFSRs for TK updates
if (k == 1)
{
if (versions[ver][0] == 64)
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] >> 1) & 0x7) ^ ((keyCells_tmp[k][i][j] << 3) & 0x8) ^ ((keyCells_tmp[k][i][j]) & 0x8);
else
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] >> 1) & 0x7F) ^ ((keyCells_tmp[k][i][j] << 7) & 0x80) ^ ((keyCells_tmp[k][i][j] << 1) & 0x80);
}
else if (k == 2)
{
if (versions[ver][0] == 64)
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] << 1) & 0xE) ^ ((keyCells_tmp[k][i][j] >> 3) & 0x1) ^ ((keyCells_tmp[k][i][j] >> 2) & 0x1);
else
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] << 1) & 0xFE) ^ ((keyCells_tmp[k][i][j] >> 7) & 0x01) ^ ((keyCells_tmp[k][i][j] >> 5) & 0x01);
}
}
}
}
for (k = 0; k < (int)(versions[ver][1] / versions[ver][0]); k++)
{
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
keyCells[k][i][j] = keyCells_tmp[k][i][j];
}
}
}
// apply the subtweakey to the internal state
for (i = 0; i <= 1; i++)
{
for (j = 0; j < 4; j++)
{
state[i][j] ^= keyCells[0][i][j];
if (2 * versions[ver][0] == versions[ver][1])
state[i][j] ^= keyCells[1][i][j];
else if (3 * versions[ver][0] == versions[ver][1])
state[i][j] ^= keyCells[1][i][j] ^ keyCells[2][i][j];
}
}
}
// Apply the constants: using a LFSR counter on 6 bits, we XOR the 6 bits to the first 6 bits of the internal state
void AddConstants(unsigned char state[4][4], int r)
{
state[0][0] ^= (RC[r] & 0xf);
state[1][0] ^= ((RC[r] >> 4) & 0x3);
state[2][0] ^= 0x2;
}
// apply the 4-bit Sbox
void SubCell4(unsigned char state[4][4])
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
state[i][j] = sbox_4[state[i][j]];
}
// apply the 4-bit inverse Sbox
void SubCell4_inv(unsigned char state[4][4])
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
state[i][j] = sbox_4_inv[state[i][j]];
}
// apply the 8-bit Sbox
void SubCell8(unsigned char state[4][4])
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
state[i][j] = sbox_8[state[i][j]];
}
// apply the 8-bit inverse Sbox
void SubCell8_inv(unsigned char state[4][4])
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
state[i][j] = sbox_8_inv[state[i][j]];
}
// Apply the ShiftRows function
void ShiftRows(unsigned char state[4][4])
{
int i, j, pos;
unsigned char state_tmp[4][4];
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
//application of the ShiftRows permutation
pos = P[j + 4 * i];
state_tmp[i][j] = state[pos >> 2][pos & 0x3];
}
}
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
state[i][j] = state_tmp[i][j];
}
}
}
// Apply the inverse ShiftRows function
void ShiftRows_inv(unsigned char state[4][4])
{
int i, j, pos;
unsigned char state_tmp[4][4];
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
//application of the inverse ShiftRows permutation
pos = P_inv[j + 4 * i];
state_tmp[i][j] = state[pos >> 2][pos & 0x3];
}
}
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
state[i][j] = state_tmp[i][j];
}
}
}
// Apply the linear diffusion matrix
//M =
//1 0 1 1
//1 0 0 0
//0 1 1 0
//1 0 1 0
void MixColumn(unsigned char state[4][4])
{
int j;
unsigned char temp;
for (j = 0; j < 4; j++)
{
state[1][j] ^= state[2][j];
state[2][j] ^= state[0][j];
state[3][j] ^= state[2][j];
temp = state[3][j];
state[3][j] = state[2][j];
state[2][j] = state[1][j];
state[1][j] = state[0][j];
state[0][j] = temp;
}
}
// Apply the inverse linear diffusion matrix
void MixColumn_inv(unsigned char state[4][4])
{
int j;
unsigned char temp;
for (j = 0; j < 4; j++)
{
temp = state[3][j];
state[3][j] = state[0][j];
state[0][j] = state[1][j];
state[1][j] = state[2][j];
state[2][j] = temp;
state[3][j] ^= state[2][j];
state[2][j] ^= state[0][j];
state[1][j] ^= state[2][j];
}
}
// decryption function of Skinny
void dec(unsigned char *input, const unsigned char *userkey, int ver, int r)
{
unsigned char state[4][4];
unsigned char dummy[4][4] = {{0}};
unsigned char keyCells[3][4][4];
int i;
memset(keyCells, 0, 48);
for (i = 0; i < 16; i++)
{
if (versions[ver][0] == 64)
{
if (i & 1)
{
state[i >> 2][i & 0x3] = input[i >> 1] & 0xF;
keyCells[0][i >> 2][i & 0x3] = userkey[i >> 1] & 0xF;
if (versions[ver][1] >= 128)
keyCells[1][i >> 2][i & 0x3] = userkey[(i + 16) >> 1] & 0xF;
if (versions[ver][1] >= 192)
keyCells[2][i >> 2][i & 0x3] = userkey[(i + 32) >> 1] & 0xF;
}
else
{
state[i >> 2][i & 0x3] = (input[i >> 1] >> 4) & 0xF;
keyCells[0][i >> 2][i & 0x3] = (userkey[i >> 1] >> 4) & 0xF;
if (versions[ver][1] >= 128)
keyCells[1][i >> 2][i & 0x3] = (userkey[(i + 16) >> 1] >> 4) & 0xF;
if (versions[ver][1] >= 192)
keyCells[2][i >> 2][i & 0x3] = (userkey[(i + 32) >> 1] >> 4) & 0xF;
}
}
else if (versions[ver][0] == 128)
{
state[i >> 2][i & 0x3] = input[i] & 0xFF;
keyCells[0][i >> 2][i & 0x3] = userkey[i] & 0xFF;
if (versions[ver][1] >= 256)
keyCells[1][i >> 2][i & 0x3] = userkey[i + 16] & 0xFF;
if (versions[ver][1] >= 384)
keyCells[2][i >> 2][i & 0x3] = userkey[i + 32] & 0xFF;
}
}
for (i = r - 1; i >= 0; i--)
{
AddKey(dummy, keyCells, ver);
}
#ifdef DEBUG
fprintf(fic, "DEC - initial state: ");
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
for (i = r - 1; i >= 0; i--)
{
MixColumn_inv(state);
#ifdef DEBUG
fprintf(fic, "DEC - round %.2i - after MixColumn_inv: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
ShiftRows_inv(state);
#ifdef DEBUG
fprintf(fic, "DEC - round %.2i - after ShiftRows_inv: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
AddKey_inv(state, keyCells, ver);
#ifdef DEBUG
fprintf(fic, "DEC - round %.2i - after AddKey_inv: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
AddConstants(state, i);
#ifdef DEBUG
fprintf(fic, "DEC - round %.2i - after AddConstants_inv: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
if (versions[ver][0] == 64)
SubCell4_inv(state);
else
SubCell8_inv(state);
#ifdef DEBUG
fprintf(fic, "DEC - round %.2i - after SubCell_inv: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
}
#ifdef DEBUG
fprintf(fic, "DEC - final state: ");
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
if (versions[ver][0] == 64)
{
for (i = 0; i < 8; i++)
input[i] = ((state[(2 * i) >> 2][(2 * i) & 0x3] & 0xF) << 4) | (state[(2 * i + 1) >> 2][(2 * i + 1) & 0x3] & 0xF);
}
else if (versions[ver][0] == 128)
{
for (i = 0; i < 16; i++)
input[i] = state[i >> 2][i & 0x3] & 0xFF;
}
}
// encryption function of Skinny
void enc(unsigned char *input, const unsigned char *userkey, int ver, int r)
{
unsigned char state[4][4];
unsigned char keyCells[3][4][4];
int i;
memset(keyCells, 0, 48);
for (i = 0; i < 16; i++)
{
if (versions[ver][0] == 64)
{
if (i & 1)
{
state[i >> 2][i & 0x3] = input[i >> 1] & 0xF;
keyCells[0][i >> 2][i & 0x3] = userkey[i >> 1] & 0xF;
if (versions[ver][1] >= 128)
keyCells[1][i >> 2][i & 0x3] = userkey[(i + 16) >> 1] & 0xF;
if (versions[ver][1] >= 192)
keyCells[2][i >> 2][i & 0x3] = userkey[(i + 32) >> 1] & 0xF;
}
else
{
state[i >> 2][i & 0x3] = (input[i >> 1] >> 4) & 0xF;
keyCells[0][i >> 2][i & 0x3] = (userkey[i >> 1] >> 4) & 0xF;
if (versions[ver][1] >= 128)
keyCells[1][i >> 2][i & 0x3] = (userkey[(i + 16) >> 1] >> 4) & 0xF;
if (versions[ver][1] >= 192)
keyCells[2][i >> 2][i & 0x3] = (userkey[(i + 32) >> 1] >> 4) & 0xF;
}
}
else if (versions[ver][0] == 128)
{
state[i >> 2][i & 0x3] = input[i] & 0xFF;
keyCells[0][i >> 2][i & 0x3] = userkey[i] & 0xFF;
if (versions[ver][1] >= 256)
keyCells[1][i >> 2][i & 0x3] = userkey[i + 16] & 0xFF;
if (versions[ver][1] >= 384)
keyCells[2][i >> 2][i & 0x3] = userkey[i + 32] & 0xFF;
}
}
#ifdef DEBUG
fprintf(fic, "ENC - initial state: ");
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
for (i = 0; i < r; i++)
{
if (versions[ver][0] == 64)
SubCell4(state);
else
SubCell8(state);
#ifdef DEBUG
fprintf(fic, "ENC - round %.2i - after SubCell: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
AddConstants(state, i);
#ifdef DEBUG
fprintf(fic, "ENC - round %.2i - after AddConstants: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
AddKey(state, keyCells, ver);
#ifdef DEBUG
fprintf(fic, "ENC - round %.2i - after AddKey: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
ShiftRows(state);
#ifdef DEBUG
fprintf(fic, "ENC - round %.2i - after ShiftRows: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
MixColumn(state);
#ifdef DEBUG
fprintf(fic, "ENC - round %.2i - after MixColumn: ", i);
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
} //The last subtweakey should not be added
#ifdef DEBUG
fprintf(fic, "ENC - final state: ");
display_cipher_state(state, keyCells, ver);
fprintf(fic, "\n");
#endif
if (versions[ver][0] == 64)
{
for (i = 0; i < 8; i++)
input[i] = ((state[(2 * i) >> 2][(2 * i) & 0x3] & 0xF) << 4) | (state[(2 * i + 1) >> 2][(2 * i + 1) & 0x3] & 0xF);
}
else if (versions[ver][0] == 128)
{
for (i = 0; i < 16; i++)
input[i] = state[i >> 2][i & 0x3] & 0xFF;
}
}
// generate test vectors for all the versions of Skinny
void TestVectors(int ver)
{
unsigned char p[16];
unsigned char c[16];
unsigned char k[48];
int n;
for (n = 1; n < 10; n++)
{
int i;
for (i = 0; i < (versions[ver][0] >> 3); i++)
c[i] = p[i] = rand() & 0xff;
for (i = 0; i < (versions[ver][0] >> 3); i++)
printf("%02x", p[i]);
printf("\n");
for (i = 0; i < (versions[ver][1] >> 3); i++)
k[i] = rand() & 0xff;
fprintf(fic, "TK = ");
for (i = 0; i < (versions[ver][1] >> 3); i++)
fprintf(fic, "%02x", k[i]);
fprintf(fic, "\n");
fprintf(fic, "P = ");
for (i = 0; i < (versions[ver][0] >> 3); i++)
fprintf(fic, "%02x", p[i]);
fprintf(fic, "\n");
enc(c, k, ver, 10);
fprintf(fic, "C = ");
for (i = 0; i < (versions[ver][0] >> 3); i++)
fprintf(fic, "%02x", c[i]);
fprintf(fic, "\n");
dec(c, k, ver, 10);
fprintf(fic, "P' = ");
for (i = 0; i < (versions[ver][0] >> 3); i++)
fprintf(fic, "%02x", c[i]);
fprintf(fic, "\n\n");
}
}
int boomerang(int r, int ver, int N3, unsigned char *dp, unsigned char *dc, unsigned char *dk1, unsigned char *dk2)
{
int i;
unsigned char p1[16], p2[16];
unsigned char c3[16], c4[16];
unsigned char k1[48], k2[48], k3[48], k4[48];
// randomly choose k1
for (i = 0; i < (versions[ver][1] >> 3); i++)
k1[i] = rand() & 0xff;
// derive k2
for (i = 0; i < (versions[ver][1] >> 3); i++)
k2[i] = k1[i] ^ dk1[i];
// derive k3
for (i = 0; i < (versions[ver][1] >> 3); i++)
k3[i] = k1[i] ^ dk2[i];
// derive k4
for (i = 0; i < (versions[ver][1] >> 3); i++)
k4[i] = k2[i] ^ dk2[i];
int num = 0;
for (int t = 0; t < N3; t++)
{
// randomly choose p1
for (i = 0; i < (versions[ver][0] >> 3); i++)
p1[i] = rand() & 0xff;
// derive p2
for (i = 0; i < (versions[ver][0] >> 3); i++)
p2[i] = p1[i] ^ dp[i];
enc(p1, k1, ver, r);
enc(p2, k2, ver, r);
// derive c3
for (i = 0; i < (versions[ver][0] >> 3); i++)
c3[i] = p1[i] ^ dc[i];
// derive c4
for (i = 0; i < (versions[ver][0] >> 3); i++)
c4[i] = p2[i] ^ dc[i];
dec(c3, k3, ver, r);
dec(c4, k4, ver, r);
bool flag = 1;
for (i = 0; i < (versions[ver][0] >> 3); i++)
if ((c3[i] ^ c4[i]) != dp[i])
flag = 0;
if (flag)
{
num++;
}
}
return num;
}
double send_boomerangs(int R, int ver, int N1, int N2, int N3, unsigned char *dp, unsigned char *dc, unsigned char *dk1, unsigned char *dk2)
{
// Parallel execution
int NUM[N1];
int counter;
printf("#Rounds: %d rounds\n", R);
printf("#Total Queries = (#Parallel threads) * (#Bunches per thread) * (#Queries per bunch) = %d * %d * %d = 2^(%f)\n", N1, N2, N3, log(N1 * N2 * N3) / log(2));
clock_t clock_timer;
double wall_timer;
clock_timer = clock();
wall_timer = omp_get_wtime();
omp_set_num_threads(N1);
#pragma omp parallel for
for (counter = 0; counter < N1; counter++)
{
int num = 0;
for (int j = 0; j < N2; j++)
{
num += boomerang(R, ver, N3, dp, dc, dk1, dk2);
}
int ID = omp_get_thread_num();
NUM[ID] = num;
}
printf("%s: %0.4f\n", "time on clock", (double)(clock() - clock_timer) / CLOCKS_PER_SEC);
printf("%s: %0.4f\n", "time on wall", omp_get_wtime() - wall_timer);
double sum = 0;
double sum_temp = 1;
for (int i = 0; i < N1; i++)
sum += NUM[i];
printf("sum = %f\n", sum);
sum_temp = (double)(N1 * N2 * N3) / sum;
printf("2^(-%f)\n\n", log(sum_temp) / log(2));
printf("##########################\n");
return sum;
}
void convert_hexstr_to_statearray(int ver, char hex_str[], unsigned char dx[16])
{
for (int i = 0; i < (versions[ver][0] >> 3); i++)
{
char hex[2];
hex[0] = hex_str[2 * i];
hex[1] = hex_str[2 * i + 1];
dx[i] = (unsigned char)(strtol(hex, NULL, 16) & 0xff);
}
}
void convert_hexstr_to_tweakarray(int ver, char hex_str[], unsigned char dt[48])
{
for (int i = 0; i < (versions[ver][1] >> 3); i++)
{
char hex[2];
hex[0] = hex_str[2 * i];
hex[1] = hex_str[2 * i + 1];
dt[i] = (unsigned char)(strtol(hex, NULL, 16) & 0xff);
}
}
int main()
{
// //test all versions of Skinny
// for (i = 0; i < (sizeof(versions) / sizeof(*versions)); i++)
// {
// sprintf(name, "test_vectors_%i_%i.txt", versions[i][0], versions[i][1]);
// fic = fopen(name, "w");
// fprintf(fic, "\n\nSkinny-%i/%i: \n", versions[i][0], versions[i][1]);
// TestVectors(i);
// fclose(fic);
// printf("Generating test vectors for Skinny-%i/%i - saved in file test_vectors_%i_%i.txt \n", versions[i][0], versions[i][1], versions[i][0], versions[i][1]);
// }
srand((unsigned)time(NULL)); // Initialization, should only be called once. int r = rand();
unsigned char dp[16];
unsigned char dc[16];
unsigned char dk1[48];
unsigned char dk2[48];
// #######################################################################################################
// #######################################################################################################
// ############################## User must change only the following lines ##############################
int n = 5; // Number of indipendent experiments
int R = 2; // Number of rounds
int ver = 1; // Determine the version:
// [0 = Skinny-64-64]
// [1 = Skinny-64-128]
// [2 = Skinny-64-192]
// [3 = Skinny-128-128]
// [4 = Skinny-128-256]
// [5 = Skinny-128-384]
char dp_str[] = "0200000002000200";
char dc_str[] = "0A00900000020080";
char dk1_str[] = "00000C00000000000000010000000000";
char dk2_str[] = "00000004000000000000000800000000";
// #######################################################################################################
// #######################################################################################################
convert_hexstr_to_statearray(ver, dp_str, dp);
convert_hexstr_to_statearray(ver, dc_str, dc);
convert_hexstr_to_tweakarray(ver, dk1_str, dk1);
convert_hexstr_to_tweakarray(ver, dk2_str, dk2);
//########################## Number of queries #########################
int N1 = Nthreads; // Number of paralle threads : N1
int deg = 12;
int N2 = 1 << deg; // Number of bunches per thread : N2 = 2^(deg)
int N3 = 1 << 12; // Number of queries per bunch : N3
//################### Number of total queries : N1*N2*N3 ###############
double sum = 0;
for (int i = 0; i < n; i++)
{
sum += send_boomerangs(R, ver, N1, N2, N3, dp, dc, dk1, dk2);
}
sum = (double)(n * N1 * N2 * N3) / sum;
printf("\nAverage = 2^(-%0.2f)\n", log(sum) / log(2));
return 0;
}