-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmiddle2r.py
495 lines (454 loc) · 19.7 KB
/
middle2r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# -*- coding: utf-8 -*-
"""
Created on May 25 2020
@author: Hosein Hadipour
"""
import math
import time
#import numpy as np
S = [0xc, 0x6, 0x9, 0x0, 0x1, 0xa, 0x2, 0xb, 0x3, 0x8, 0x5, 0xd, 0x4, 0xe, 0x7, 0xf] # skinny 4-bit s-box
Sinv = [0 for i in range(len(S))]
for i in range(len(S)):
Sinv[S[i]] = i
def print2Dlist(D):
size = len(D[0])
for i in range(size):
print(str(i)+': ', end = "")
for j in range(size):
print(D[i][j], ' ', end = "")
print('')
class BCT_Analyzer:
def __init__(self, S):
self.initialization(S)
def initialization(self, S):
print('S : ', S)
print('Sinv: ', Sinv)
self.size = len(S)
self.ddt = self.get_DDT(S) # ddt[alpha][beta] = int
self.bct = self.get_BCT(S, Sinv) # bct[alpha][beta] = int
self.Yddt = self.get_Yddt(S) # Yddt[alpha][beta] = {y0,y1,y2,y3}, the set of possible outputs
self.dYddt = self.get_dYddt(S) # dYddt[alpha][beta] = {0,y1 xor y0, y2 xor y0, y3 xor y0}, the set of possible crossing differences
self.Xddt = self.get_Xddt(S) # Xddt[alpha][beta] = {x0,x1,x2,x3}, the set of possible inputs
self.dXddt = self.get_dXddt(S) # dXddt[alpha][beta] = {0,x1 xor x0, x2 xor x0, x3 xor x0}, the set of possible crossing differences
self.Xbct = self.get_Xbct(S, Sinv) # Xbct[alpha][beta] = {x0,x1,..}, the set of possible inputs
self.DBT = self.get_DBT(S, Sinv) # dXbct[alpha][beta][y1^y2] = {y0, y1, ..}
self.BDT = self.get_BDT(S, Sinv) # DXbct[alpha][beta][x1^x3] = {x0, x1, ..}
self.SD = self.get_SD(S) # SD[i] = {d | ddt[i][d] > 0 }
#self.SDi = self.get_SD(Sinv) # SDi[i] = {d | ddt[d][i] > 0 }
self.SDi = self.get_SDi(Sinv) # SDi[i] = {d | ddt[d][i] > 0 }
self.SB = self.get_SB(S) # SB[i] = {d | bct[i][d] > 0 }
self.SBi = self.get_SB(Sinv) # SBi[i] = {d | bct[d][i] > 0 }
# alpha --- *
# - -
# - -
# - -
# *--- beta
self.DBCT = self.get_DBCT() # DBCT[alpha][beta] = int
self.DBCT_dv = self.get_DBCT_dashv() # DBCT_dv[alpha][beta][gamma] = int or float
self.DBCT_vd = self.get_DBCT_vdash() # DBCT_vd[alpha][beta][gamma] = int or float
self.x_ddt2_y = self.get_x_2ddt_y()
self.x_ddt3_y = self.get_x_3ddt_y()
self.x_ddt2i_y = self.get_x_2ddti_y()
self.x_ddt3i_y = self.get_x_3ddti_y()
self.DBT_star = self.get_DBT_star(S, Sinv)
self.BDT_star = self.get_BDT_star(S, Sinv)
self.BCTDI = self.get_BCTDI(S, Sinv)
self.DSBCT = self.get_DSBCT()
self.DSBCT_vd = self.get_DSBCT_vdash()
self.DSBCT_dv = self.get_DSBCT_dashv()
def get_DDT(self, S):
ddt = []
for i in range(self.size):
ddt.append( [0 for j in range(self.size)] )
for inDiff in range(self.size):
for x in range(self.size):
ddt[inDiff][S[x]^S[x^inDiff]] += 1
#print2Dlist(ddt)
return ddt
def get_BCT(self, S, Sinv):
bct = []
for i in range(self.size):
bct.append( [0 for j in range(self.size)] )
for inDiff in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff]
x3 = Sinv[y1^outDiff]
x4 = Sinv[y2^outDiff]
if x3^x4 == inDiff:
bct[inDiff][outDiff] += 1
#print2Dlist(bct)
return bct
def get_BCTDI(self, S, Sinv):
bctdi = [[[0 for inDiff1 in range(self.size)] for inDiff2 in range(self.size)] for outDiff in range(self.size)]
for inDiff1 in range(self.size):
for inDiff2 in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x ^ inDiff1]
x3 = Sinv[y1 ^ outDiff]
x4 = Sinv[y2 ^ outDiff]
if x3 ^ x4 == inDiff2:
bctdi[inDiff1][inDiff2][outDiff] += 1
return bctdi
def get_Yddt(self, S):
Yddt = []
for i in range(self.size):
Yddt.append( [set([]) for j in range(self.size)] )
for inDiff in range(self.size):
for x in range(self.size):
outDiff = S[x]^S[x^inDiff]
Yddt[inDiff][outDiff] |= set([S[x]])
return Yddt
def get_Xddt(self, S):
Xddt = []
for i in range(self.size):
Xddt.append( [set([]) for j in range(self.size)] )
for inDiff in range(self.size):
for x in range(self.size):
outDiff = S[x]^S[x^inDiff]
Xddt[inDiff][outDiff] |= set([x])
return Xddt
def get_dYddt(self, S):
dYddt = []
for i in range(self.size):
dYddt.append( [set([]) for j in range(self.size)] )
for inDiff in range(self.size):
for outDiff in range(self.size):
if len(self.Yddt[inDiff][outDiff])>0:
ls = []
for y in self.Yddt[inDiff][outDiff]:
ls.append(y)
lls = [ls[i]^ls[0] for i in range(len(ls))]
dYddt[inDiff][outDiff] = set(lls)
return dYddt
def get_dXddt(self, S):
dXddt = []
for i in range(self.size):
dXddt.append( [set([]) for j in range(self.size)] )
for inDiff in range(self.size):
for outDiff in range(self.size):
if len(self.Xddt[inDiff][outDiff])>0:
ls = []
for x in self.Xddt[inDiff][outDiff]:
ls.append(x)
lls = [ls[i]^ls[0] for i in range(len(ls))]
dXddt[inDiff][outDiff] = set(lls)
return dXddt
def get_Xbct(self, S, Sinv):
Xbct = []
for i in range(self.size):
Xbct.append( [set([]) for j in range(self.size)] )
for inDiff in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff]
x3 = Sinv[y1^outDiff]
x4 = Sinv[y2^outDiff]
if x3^x4 == inDiff:
Xbct[inDiff][outDiff] |= set([x])
return Xbct
def get_BDT(self, S, Sinv):
dXbct = []
for i in range(self.size):
matrix = []
for j in range(self.size):
matrix.append( [set([]) for k in range(self.size)] )
dXbct.append(matrix)
for inDiff in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff]
x3 = Sinv[y1^outDiff]
x4 = Sinv[y2^outDiff]
if x3^x4 == inDiff:
dXbct[inDiff][outDiff][x^x3] |= set([x])
return dXbct
def get_BDT_star(self, S, Sinv):
print('\nComputing the BDT* was started ...')
print('Time complexity = 2^(%0.2f)' % math.log(self.size**4, 2))
print('Memory complexity = 2^(%0.2f)' % math.log(self.size**4, 2))
dXbct = [[[[set([]) for k in range(self.size)] for outDiff2 in range(self.size)] for outDiff1 in range(self.size)] for inDiff in range(self.size)]
for inDiff in range(self.size):
for outDiff1 in range(self.size):
for outDiff2 in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff]
x3 = Sinv[y1^outDiff1]
x4 = Sinv[y2^outDiff2]
if x3^x4 == inDiff:
dXbct[inDiff][outDiff1][outDiff2][x^x3] |= set([x])
print('Construction of BDT* was finished ...\n')
return dXbct
def get_DBT(self, S, Sinv):
dXbct = []
for i in range(self.size):
matrix = []
for j in range(self.size):
matrix.append( [set([]) for k in range(self.size)] )
dXbct.append(matrix)
for inDiff in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff]
x3 = Sinv[y1^outDiff]
x4 = Sinv[y2^outDiff]
if x3^x4 == inDiff:
dXbct[inDiff][outDiff][y1^y2] |= set([y1])
return dXbct
def get_DBT_star(self, S, Sinv):
print('\nComputing the DBT* was started ...')
print('Time complexity = 2^(%0.2f)' % math.log(self.size**4, 2))
print('Memory complexity = 2^(%0.2fd)' % math.log(self.size**4, 2))
dXbct = [[[[set([]) for k in range(self.size)] for outDiff in range(self.size)] for inDiff2 in range(self.size)] for inDiff1 in range(self.size)]
for inDiff1 in range(self.size):
for inDiff2 in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff1]
x3 = Sinv[y1^outDiff]
x4 = Sinv[y2^outDiff]
if x3^x4 == inDiff2:
dXbct[inDiff1][inDiff2][outDiff][y1^y2] |= set([y1])
print('Construction of DBT* was finished ...\n')
return dXbct
def get_DBT(self, S, Sinv):
dXbct = []
for i in range(self.size):
matrix = []
for j in range(self.size):
matrix.append( [set([]) for k in range(self.size)] )
dXbct.append(matrix)
for inDiff in range(self.size):
for outDiff in range(self.size):
for x in range(self.size):
y1 = S[x]
y2 = S[x^inDiff]
x3 = Sinv[y1^outDiff]
x4 = Sinv[y2^outDiff]
if x3^x4 == inDiff:
dXbct[inDiff][outDiff][y1^y2] |= set([y1])
return dXbct
def get_SD(self, S):
Sd = [set([]) for i in range(self.size)]
for i in range(self.size):
for j in range(self.size):
if self.ddt[i][j]>0:
Sd[i] |= set([j])
return Sd
def get_SDi(self, S):
SDi_table = [set() for i in range(self.size)]
for j in range(self.size):
for i in range(self.size):
if self.ddt[i][j] > 0:
SDi_table[j] |= set([i])
return SDi_table
def get_SB(self, S):
Sb = [set([]) for i in range(self.size)]
for i in range(self.size):
for j in range(self.size):
if self.bct[j][i]>0:
Sb[i] |= set([j])
return Sb
def get_DBCT(self):
DBCT = []
for i in range(self.size):
DBCT.append( [float(0) for j in range(self.size)] )
for alpha in range(self.size):
for beta in range(self.size):
alist = self.SD[alpha] & self.SBi[beta]
if len(alist) == 0:
DBCT[alpha][beta] = 0
else:
for a in alist:
for b in range(self.size):
s = self.BDT[a][beta][b]
if len(s) and b in self.dYddt[alpha][a]:
DBCT[alpha][beta] += len(s)*self.ddt[alpha][a]
return DBCT
def get_DBCT_dashv(self):
"""
alpha -------- *
- -
- -
beta -----gamma
"""
pgram = []
for i in range(self.size):
submat = []
for j in range(self.size):
submat.append( [float(0) for k in range(self.size)] )
pgram.append(submat)
for alpha in range(self.size):
for beta in range(self.size):
for gamma in range(self.size):
alist = self.SD[alpha] & self.SBi[gamma]
num = 0
if len(alist) > 0:
for a in alist:
s = self.BDT[a][gamma][beta]
if len(s) and beta in self.dYddt[alpha][a]:
num += len(s)*self.ddt[alpha][a]
pgram[alpha][beta][gamma] = num
return pgram
def get_DBCT_vdash(self):
"""
alpha -------- beta
- -
- -
* ----- gamma
"""
pgram = []
for i in range(self.size):
submat = []
for j in range(self.size):
submat.append( [float(0) for k in range(self.size)] )
pgram.append(submat)
for alpha in range(self.size):
for beta in range(self.size):
for gamma in range(self.size):
blist = self.SB[alpha] & self.SDi[gamma]
num = 0
if len(blist) > 0:
for b in blist:
s = self.DBT[alpha][b][beta]
if len(s) and beta in self.dXddt[b][gamma]:
num += len(s)*self.ddt[b][gamma]
pgram[alpha][beta][gamma] = num
return pgram
def get_DSBCT_vdash(self):
"""
delta1 --------- delta2
- -
- -
* --------- nabla3
"""
output = [[[0 for nabla3 in range(self.size)] for delta2 in range(self.size)] for delta1 in range(self.size)]
for delta1 in range(self.size):
for delta2 in range(self.size):
for nabla3 in range(self.size):
for x in range(self.size):
if Sinv[Sinv[S[S[x]] ^ nabla3]] ^ Sinv[Sinv[S[S[x ^ delta1]] ^ nabla3]] == delta1 and \
S[x ^ delta1] ^ S[x] == delta2:
output[delta1][delta2][nabla3] += 1
return output
def get_DSBCT_dashv(self):
"""
delta1 --------- *
- -
- -
nabla2 --------- nabla3
"""
output = [[[0 for nabla3 in range(self.size)] for nabla2 in range(self.size)] for delta1 in range(self.size)]
for delta1 in range(self.size):
for nabla2 in range(self.size):
for nabla3 in range(self.size):
for x in range(self.size):
if Sinv[Sinv[S[S[x]] ^ nabla3]] ^ Sinv[Sinv[S[S[x ^ delta1]] ^ nabla3]] == delta1 and\
Sinv[S[S[x]] ^ nabla3] ^ Sinv[S[S[x ^ delta1]] ^ nabla3] == nabla2:
output[delta1][nabla2][nabla3] += 1
return output
def get_DSBCT(self):
"""
delta1 --------- *
- -
- -
* --------- nabla3
"""
output = [[0 for nabla3 in range(self.size)] for delta1 in range(self.size)]
for delta1 in range(self.size):
for nabla3 in range(self.size):
for x in range(self.size):
if Sinv[Sinv[S[S[x]] ^ nabla3]] ^ Sinv[Sinv[S[S[x ^ delta1]] ^ nabla3]] == delta1:
output[delta1][nabla3] += 1
return output
def accumulativeDDT(self, d1):
d2 = dict()
for i in range(self.size) :
num = 0
for j in range(self.size) :
num += d1[j]*self.ddt[j][i]
d2[i] = num
return d2
def accumulativeDDTinv(self, d1):
d2 = dict()
for i in range(self.size) :
num = 0
for j in range(self.size) :
num += d1[j]*self.ddt[i][j]
d2[i] = num
return d2
def get_x_2ddt_y(self):
x_ddt2_y_table = [[float(0) for i in range(self.size)] for j in range(self.size)]
for x in range(0, self.size):
for y in range(0, self.size):
temp = float(0)
for k in range(0, self.size):
temp += self.ddt[x][k] * self.ddt[k][y]
x_ddt2_y_table[x][y] = temp
return x_ddt2_y_table
def get_x_3ddt_y(self):
x_ddt3_y_table = [[float(0) for i in range(self.size)] for j in range(self.size)]
for x in range(0, self.size):
for y in range(0, self.size):
temp = float(0)
for k1 in range(0, self.size):
for k2 in range(0, self.size):
temp += self.ddt[x][k1] * self.ddt[k1][k2] * self.ddt[k2][y]
x_ddt3_y_table[x][y] = temp
return x_ddt3_y_table
def get_x_2ddti_y(self):
x_ddt2i_y_table = [[float(0) for i in range(self.size)] for j in range(self.size)]
for x in range(0, self.size):
for y in range(0, self.size):
temp = float(0)
for k in range(0, self.size):
temp += self.ddt[y][k] * self.ddt[k][x]
x_ddt2i_y_table[x][y] = temp
return x_ddt2i_y_table
def get_x_3ddti_y(self):
x_ddt3i_y_table = [[float(0) for i in range(self.size)] for j in range(self.size)]
for x in range(0, self.size):
for y in range(0, self.size):
temp = float(0)
for k1 in range(0, self.size):
for k2 in range(0, self.size):
temp += self.ddt[y][k2] * self.ddt[k2][k1] * self.ddt[k1][x]
x_ddt3i_y_table[x][y] = temp
return x_ddt3i_y_table
def compute_probability_2r(self, B11, dp4, dp14, Cp10):
num = 0
temp1 = 0
temp2 = 0
temp3 = 0
# for cp7 in range(self.size):
# for c9 in range(self.size):
# for cp7 in range(self.size):
# num += self.DBCT[B11][dp14] * self.DSBCT_dv[B11][cp7 ^ c9][dp14] * self.DSBCT[B11][dp4] * self.ddt[cp7][dp4] * self.bct[Cp10][dp4]
# temp1 += self.DSBCT_dv[B11][cp7 ^ c9][dp14]
# temp2 += self.DSBCT[B11][dp4]
# temp3 += self.DSBCT_dv[B11][cp7 ^ c9][dp14] * self.DSBCT[B11][dp4]
for C91 in range(self.size):
for C92 in range(self.size):
num += self.DBCT[B11][dp14] * self.ddt[B11][C91] * \
self.ddt[B11][C92] * self.DBCT[B11][dp4] * \
self.BCTDI[C91][C92][dp14] * self.bct[Cp10][dp4]
print(num)
print('temp1= %d' % temp1)
print('temp2= %d' % temp2)
print('temp3= %d' % temp3)
print("self.size = %d" % self.size)
if num != 0:
return (math.log(num, 2) - (8 * 4))
else:
return '-inf'
BCT = BCT_Analyzer(S)
print('computation started ...')
print(BCT.compute_probability_2r(B11=0x2, dp4=0x9, dp14=0x8, Cp10=0xD))