-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdatautils.py
134 lines (115 loc) · 4.88 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pdb
import numpy as np
import torch
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
def get_wikitext2(nsamples, seed, seqlen, model,cache_dir):
print("get_wikitext2")
from datasets import load_dataset
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1',cache_dir='/datasets/tmp/wikitext/', split='train')
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1',cache_dir='/datasets/tmp/wikitext/', split='test')
from transformers import AutoTokenizer
if "llama" in model:
tokenizer = AutoTokenizer.from_pretrained(cache_dir, use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(model, cache_dir=cache_dir, use_fast=False)
trainenc = tokenizer("\n\n".join(traindata['text']), return_tensors='pt')
testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt')
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_ptb(nsamples, seed, seqlen, model,cache_dir):
print("get_ptb")
from datasets import load_dataset
traindata = load_dataset('ptb_text_only', 'penn_treebank',cache_dir='/datasets/tmp/ptb_text_only/', split='train')
valdata = load_dataset('ptb_text_only', 'penn_treebank',cache_dir='/datasets/tmp/ptb_text_only/', split='validation')
from transformers import AutoTokenizer
if "llama" in model:
tokenizer = AutoTokenizer.from_pretrained(cache_dir, use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(model, cache_dir=cache_dir, use_fast=False)
trainenc = tokenizer("\n\n".join(traindata['sentence']), return_tensors='pt')
testenc = tokenizer("\n\n".join(valdata['sentence']), return_tensors='pt')
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_c4(nsamples, seed, seqlen, model,cache_dir):
print("get_c4")
from datasets import load_dataset
traindata = load_dataset(
'allenai/c4', 'allenai--c4', cache_dir='/datasets/tmp/allenai--c4/', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train'
)
valdata = load_dataset(
'allenai/c4', 'allenai--c4', cache_dir='/datasets/tmp/allenai--c4/',data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation'
)
from transformers import AutoTokenizer
if "llama" in model:
tokenizer = AutoTokenizer.from_pretrained(cache_dir, use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(model, cache_dir=cache_dir, use_fast=False)
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
import random
random.seed(0)
valenc = []
for _ in range(256):
while True:
i = random.randint(0, len(valdata) - 1)
tmp = tokenizer(valdata[i]['text'], return_tensors='pt')
if tmp.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
valenc.append(tmp.input_ids[:, i:j])
valenc = torch.hstack(valenc)
# class TokenizerWrapper:
# def __init__(self, input_ids):
# self.input_ids = input_ids
# valenc = TokenizerWrapper(valenc)
return trainloader, valenc
def get_loaders(
name, nsamples=128, seed=0, seqlen=2048, model='',cache_dir=''
):
if 'wikitext2' in name:
return get_wikitext2(nsamples, seed, seqlen, model,cache_dir)
if 'ptb' in name:
return get_ptb(nsamples, seed, seqlen, model,cache_dir)
if 'c4' in name:
return get_c4(nsamples, seed, seqlen, model,cache_dir)
if 'mix' in name:
wiki_train,wiki_val=get_wikitext2(nsamples//3, seed, seqlen, model,cache_dir)
ptb_train,ptb_val=get_ptb(nsamples//3, seed, seqlen, model,cache_dir)
c4_train,c4_val=get_c4(nsamples//3, seed, seqlen, model,cache_dir)
train=wiki_train+ptb_train+c4_train
val=None
return train,val