-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathklasifkasi.py
66 lines (53 loc) · 1.97 KB
/
klasifkasi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from keras.applications import ResNet50
from keras.applications import InceptionV3
from keras.applications import Xception # TensorFlow ONLY
from keras.applications import VGG16
from keras.applications import VGG19
from keras.applications import imagenet_utils
from keras.applications.inception_v3 import preprocess_input
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
import numpy as np
import argparse
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to the input image")
ap.add_argument("-model", "--model", type=str, default="vgg16",
help="name of pre-trained network to use")
args = vars(ap.parse_args())
MODELS = {
"vgg16": VGG16,
"vgg19": VGG19,
"inception": InceptionV3,
"xception": Xception, # TensorFlow ONLY
"resnet": ResNet50
}
if args["model"] not in MODELS.keys():
raise AssertionError("The --model command line argument should "
"be a key in the `MODELS` dictionary")
inputShape = (224, 224)
preprocess = imagenet_utils.preprocess_input
if args["model"] in ("inception", "xception"):
inputShape = (299, 299)
preprocess = preprocess_input
print("[INFO] loading {}...".format(args["model"]))
Network = MODELS[args["model"]]
model = Network(weights="imagenet")
print("[INFO] loading and pre-processing image...")
image = load_img(args["image"], target_size=inputShape)
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess(image)
# classify the image
print("[INFO] classifying image with '{}'...".format(args["model"]))
preds = model.predict(image)
P = imagenet_utils.decode_predictions(preds)
for (i, (imagenetID, label, prob)) in enumerate(P[0]):
print("{}. {}: {:.2f}%".format(i + 1, label, prob * 100))
orig = cv2.imread(args["image"])
(imagenetID, label, prob) = P[0][0]
cv2.putText(orig, "Label: {}, {:.2f}%".format(label, prob * 100),
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
cv2.imshow("Classification", orig)
cv2.waitKey(0)