-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathworkshop2022.html
556 lines (447 loc) · 23 KB
/
workshop2022.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<meta name="keywords" content="hands,ICCV 2023,workshop,pose estimation">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="generator" content="jemdoc, see http://jemdoc.jaboc.net/" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<link rel="stylesheet" href="main.css" type="text/css" />
<link rel="stylesheet" href="font-awesome/css/font-awesome.min.css">
<title>HANDS Workshop</title>
</head>
<body>
<div id="main-container">
<div id="header-container">
<div id="header">
<div id="header-icon-text-container">
<div id="header-text-container">
<nav class="style1">
<ul id="outer_list">
<li id="outer_li_year"><a id="current_year" href="#">2022<span id="arrow"></span></a>
<ul id="top_list">
<li id="style2"><a id="style3" href="workshop2024.html">2024</a></li>
<li id="style2"><a id="style3" href="workshop2023.html">2023</a></li>
<li id="style2"><a id="style3" href="workshop2022.html">2022</a></li>
<li id="style2"><a id="style3" href="https://sites.google.com/view/hands2019/home">2019</a>
<li id="style2"><a id="style3" href="https://sites.google.com/view/hands2018">2018</a>
<li id="style2"><a id="style3" href="">2017</a>
<li id="style2"><a id="style3" href="https://labicvl.github.io/hand/Hands2016/#home">2016</a>
<li id="style2"><a id="style3" href="">2015</a>
<!-- <li id="style2"><a id="style3" href="workshop2022">2022</a></li> -->
</ul>
</li>
<li id="outer_li"><a id="workshop_link" href="#">Workshop</a>
</li>
<li id="outer_li"><a id="challenge_link" href="#">Challenge</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div id="layout-content">
<div id="text-img-container">
<div id="img-container">
<a href="https://hands-workshop.org/"><img width="100%" alt="HANDS" src="logos/hands.png"></a>
</div>
<div id="text-container"></div>
</div>
<p>
<div id="beamer">
<beam>
Observing and Understanding <b>Hands</b> in Action
</beam></br>
<beams>
in conjunction with ECCV 2022</br>
</beams>
</div>
<br>
<div id="menu-container">
<div id="menu-item"><a id="style6" href="#overview">Overview</a></div>
<div id="menu-item"><a id="style6" href="#schedule">Schedule</a></div>
<div id="menu-item"><a id="style6" href="#papers">Papers</a></div>
<div id="menu-item"><a id="style6" href="#speakers">Speakers</a></div>
<div id="menu-item"><a id="style6" href="#organizers">Organizers</a></div>
<!-- <div id="menu-item"><a id="style6" href="#chal-committee">Chal-committee</a></div> -->
<div id="menu-item"><a id="style6" href="#sponsors">Sponsors</a></div>
<div id="menu-item"><a id="style6" href="#contact">Contact</a></div>
</div>
<br>
<br>
<p style="align-items: center;text-align: center; font-size:20px;">
<b>This page is a rebuild of the original page, which can be found <a target="_blank"
href="https://sites.google.com/view/hands2022/home">here</a></b><br>
</p>
<h1 id="overview">Overview </h1>
<font size="5">
Welcome to join our ECCV 2022 Workshop!
</font>
</br>
</br>
<p>
The sixth edition of this ECCV2022 workshop aims at gathering researchers who work on 2D/3D hand detection,
segmentation, pose estimation, and tracking problems and its applications. This edition will emphasize
<b>reduced ground
truth labels</b> and focus on topics such as <b>semi-supervised or self-supervised learning for training
hand pose estimation
systems</b>. Development of RGB-D sensors and camera miniaturization (wearable cameras, smart phones,
ubiquitous computing)
have opened the door to a whole new range of technologies and applications which require detecting hands and
recognizing
hand poses in a variety of scenarios, including AR/VR, assisted car driving, robot grasping, and health care.
However,
labelling accurate real-world hand poses is still non-trivial. Most existing hand pose methods fail to
generalize well
to the real world scenarios, especially when considering <b>hand-object or hand-hand interaction
scenarios</b>. As new
multiview video benchmarks have been proposed for the hand-object or hand-hand interaction, our goal is to
encourage
semi-/self-supervised learning for hand poses to utilize spatial-temporal information and reduce reliance on
annotations. We will also cover up a “breadth of application” including sign language recognition, desktop
interaction,
egocentric views, object manipulations, far range and over-the-shoulder driver footage. The relevant topics
include:
</p>
<h2>Topics</h2>
We will cover all hand-related topics. The relevant topics include and not limited to:
<ul id="topicstyle1">
<li id="topicstyle2">2D/3D hand pose estimation</li>
<li id="topicstyle2">Semi-/self-/weakly-supervised pose estimation </li>
<li id="topicstyle2">Hand-object/hand interaction</li>
<li id="topicstyle2">Robot grasping and object manipulation</li>
<li id="topicstyle2">Imitation learning, reinforcement learning</li>
<li id="topicstyle2">Hand detection/segmentation</li>
<li id="topicstyle2">Gesture recognition/interfaces</li>
<li id="topicstyle2">3D articulated hand tracking</li>
<li id="topicstyle2">Hand modelling and rendering</li>
<li id="topicstyle2">Hand activity recognition</li>
<li id="topicstyle2">Egocentric vision systems</li>
<li id="topicstyle2">Structured prediction, regression, and other relevant theories/algorithms</li>
<li id="topicstyle2">Applications of hand pose estimation in AR/VR/robotics/haptics</li>
<li id="topicstyle2">Driver hand activity analysis</li>
</ul>
<h1 id="schedule">Schedule(Israel Time)</h1>
<p style="align-items: center;text-align: center;"><b>Sunday afternoon (2:00 pm - 6:00 pm), Oct. 23.
2022</b></br>
<b>Grand Ballroom E, David
Intercontinental, Tel Aviv</b></br>
</p>
<table class="dataintable">
<tbody>
<tr>
<td><b>14:20 - 14:30</b></td>
<td>Introduction/opening remarks</td>
</tr>
<tr>
<td><b>14:30 - 15:00</b></td>
<td> Invited Talk: Robert Wang</td>
</tr>
<tr>
<td></td>
<td> <b>Title:</b> Hands for AR/VR
</td>
</tr>
<tr>
<td><b>15:00 - 15:30</b></td>
<td> Invited Talk: Hyung Jin Chang </td>
</tr>
<tr>
<td></td>
<td> <b>Title:</b> Understanding Hand-Object Interactions in 3D with Graph-based Network
</td>
</tr>
<tr>
<td> <b>15:30 - 15:34</b></td>
<td> Challenge results</td>
</tr>
<tr>
<td> <b>15:34 - 15:42</b></td>
<td> Technical report: Cunlin Wu</td>
</tr>
<tr>
<td></td>
<td> <b>Title:</b> How to lift multi-view 2D hand pose to 3D counterpart? A closed form solution
</td>
</tr>
<tr>
<td><b>15:42 - 15:50</b></td>
<td> Technical report: Xiaozheng Zheng </td>
</tr>
<tr>
<td></td>
<td> <b>Title:</b> Multiview-Consistent Self-Supervised Learning for Hand Pose Reconstruction
</td>
</tr>
<tr>
<td><b>15:50 - 16:50</b></td>
<td> Coffee break & Paper (poster) presentations </td>
</tr>
<tr>
<td><b>16:50 - 17:20</b></td>
<td> Invited speaker: Yu-Wei Chao </td>
</tr>
<tr>
<td></td>
<td> <b>Title:</b> Human-Robot Handover: From Real to Sim</br>
</td>
</tr>
<tr>
<td><b>17:20 - 17:50</b></td>
<td> Invited speaker: Dimitrios Tzionas </td>
</tr>
<tr>
<td></td>
<td> <b>Title:</b> Towards Human Avatars in Interaction with Objects</br>
</td>
</tr>
<tr>
<td> <b>17:50 - 18:00</b></td>
<td> Conclusion & prizes</td>
</tr>
</tbody>
</table>
<h1 id="papers">Accepted Papers & Extended Abstracts</h1>
<!-- list papers in the form of:
OakInk2 : A Dataset for Long-Horizon Hand-Object Interaction and Complex Manipulation Task Completion.
Xinyu Zhan*, Lixin Yang*, Kangrui Mao, Hanlin Xu, Yifei Zhao, Zenan Lin, Kailin Li, Cewu Lu.
[pdf] -->
<p>We are delighted to announce the following accepted papers and extended abstracts will appear in the
workshop! All Extended abstracts and invited posters should prepare posters for communication during the
workshop.</p> </br>
<p> <b>Poster size: the posters should be portrait (vertical), with a maximum size of 90x180 cm.</b></p>
<!-- <ul> -->
<h2>Accepted Extended Abstracts</h2>
<ul>
<li> Background Mixup Data Augmentation for Hand and Object-in-Contact Detection. <br>
<i> Koya Tango, Takehiko Ohkawa, Ryosuke Furuta, Yoichi Sato.</i> <br>
<!-- [pdf] -->
</li>
<a href="https://drive.google.com/file/d/1KBq2VZvg8hONQpHchA688O4bg5SXPnJl/view?usp=sharing">[pdf]</a>
<a href="https://drive.google.com/file/d/1tMYJm5AZhOJOKk0BMiWP0JrTeBPDmZ8k/view?usp=sharing">[supp]</a>
</ul>
<ul>
<li> Scalable High-fidelity 3D Hand Shape Reconstruction via Graph Frequency Decomposition.<br>
<i> Tianyu Luan, Jingjing Meng, Junsong Yuan.</i> <br>
<!-- [pdf] -->
<a href="https://drive.google.com/file/d/1JExKfdkt4NaJ7PHS-5Pg1LbXuYyEJd08/view?usp=sharing">[pdf]</a>
</li>
</ul>
<ul>
<li> MC-hands-1M: A glove-wearing hand dataset for pose estimation. <br>
<i> Prodromos Boutis, Zisis Batzos, Konstantinos Konstantoudakis, Anastasios Dimou, Petros Daras.</i> <br>
<!-- [pdf] -->
<a href="https://drive.google.com/file/d/15-DVcH8ONeqjZJqq0TwF8l2UpZD0cGka/view?usp=sharing">[pdf]</a>
<a
href="https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F2210.10428&sa=D&sntz=1&usg=AOvVaw2jSnqjcsXb4L_wEgKjb0Bh">[arxiv]</a>
</li>
</ul>
<ul>
<li> Controllable Human Grasp Generation. <br>
<i> Lan Feng, Sammy Christen, Jie Song.</i> <br>
<!-- [pdf] -->
<a href="https://drive.google.com/file/d/1DHFcEgn2VDMKjzZaUS4BOGzlbENLMnNi/view?usp=sharing">[pdf]</a>
<a href="https://drive.google.com/file/d/1d7kLnhF__pOAM2G0u7Te0Q7pHAdnVWlv/view?usp=sharing">[poster]</a>
</li>
</ul>
<h2>Technical Reports</h2>
<ul>
<li> Multiview-Consistent Self-Supervised Learning for Hand Pose Reconstruction. <br>
<i> Xiaozheng Zheng, Chao Wen, Zhou Xue. </i> <br>
<!-- [pdf] -->
<a href="https://drive.google.com/file/d/1Iq-cIqY16EBMyWmmpnj4qPsZB8sFqu75/view?usp=sharing">[pdf]</a>
</li>
</ul>
<ul>
<li> How to Lift Multi-View 2D Hand Pose to 3D Counterpart: A Closed Form Solution. <br>
<i> Cunlin Wu, Yang Xiao, Changlong Jiang, Jinghong Zheng, Zhiguo Cao, Zhiwen Fang, Joey Tianyi Zhou, and
Junsong Yuan. </i> <br>
<!-- [pdf] -->
<a href="https://drive.google.com/file/d/1kgXx6b278YcardcZhnSnU9j2SJVOKAMf/view?usp=sharing">[pdf]</a>
</li>
</ul>
<h2>Invited Posters</h2>
<ul>
<li> S2Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised
Learning. <br>
<i> Tze Ho Elden Tse, Zhongqun Zhang, Kwang In Kim, Ales Leonardis, Feng Zheng, Hyung Jin Chang.</i> <br>
<!-- [pdf] -->
</li>
</ul>
<ul>
<li> AlignSDF: Pose-Aligned Signed Distance Fields for Hand-Object Reconstruction. <br>
<i> Zerui Chen, Yana Hasson, Cordelia Schmid, Ivan Laptev.</i> <br>
<!-- [pdf] -->
</li>
</ul>
<ul>
<li> Domain Adaptive Hand Keypoint and Pixel Localization in the Wild. <br>
<i> Takehiko Ohkawa, Yu-Jhe Li, Qichen Fu, Ryosuke Furuta, Kris M. Kitani, Yoichi Sato.</i> <br>
<!-- [pdf] -->
</li>
</ul>
<ul>
<li> PressureVision: Estimating Hand Pressure from a Single RGB Image.<br>
<i> Patrick Grady, Chengcheng Tang, Samarth Brahmbhatt, Christopher D. Twigg, Chengde Wan, James Hays,
Charles C. Kemp. </i> <br>
<!-- [pdf] -->
</li>
</ul>
<ul>
<li> Generative Adversarial Network for Future Hand Segmentation from Egocentric Video. <br>
<i> Wenqi Jia, Miao Liu, James M. Rehg.</i> <br>
<!-- [pdf] -->
</li>
</ul>
<ul>
<li> TransGrasp: Grasp Pose Estimation of a Category of Objects by Transferring Grasps from Only
One Labeled Instance. <br>
<i> Hongtao Wen*, Jianhang Yan*, Wanli Peng, Yi Sun.</i> <br>
<!-- [pdf] -->
<a
href="https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fyanjh97%2FTransGrasp%2Freleases%2Fdownload%2Fvideo-poster%2F4338-poster.pdf&sa=D&sntz=1&usg=AOvVaw1ggcVISkZKwaxqxzV3P8uy">[poster]</a>
<a href="https://youtu.be/gIftKDTnEW0">[video]</a>
</li>
</ul>
<h1 id="speakers">Invited Speakers</h1>
<div id="member-container" style="display:grid">
<div id="member" style="display:flex;width:100%;">
<img src="./profiles/2022/Prof.Dr.HyungJinChang.jpg" style="align-self:center;width:150px;height: 150px;">
<div style="text-align:left;margin-left:10px;margin-top:20px">
<b><a href="https://hyungjinchang.wordpress.com">Prof. Dr. Hyung Jin Chang</a></b>
is an Associate Professor of the School of Computer Science at the University of Birmingham and a Turing
Fellow of the
Alan Turing Institute. His research interests are focused on human-centred visual learning, especially in
application to
human-robot interaction. Computer vision and machine learning including deep learning are his expertise
research area.
</div>
</div>
<div id="member" style="display:flex;width:100%;">
<img src="./profiles/2022/Dr.Yu-Wei Chao.jpg" style="align-self:center;width:150px;height: 150px;">
<div style="text-align:left;margin-left:10px;margin-top:20px">
<b><a href="https://research.nvidia.com/person/yu-wei-chao">Dr. Yu-Wei Chao</a></b>
is a Senior Research Scientist at NVIDIA Seattle Robotics Lab. His research lies in the intersection of
computer vision,
machine learning, robotics, and simulation. His recent work focuses on human-robot interaction and robot
learning from
human in the context of object manipulation.
</div>
</div>
<div id="member" style="display:flex;width:100%;">
<img src="./profiles/2022/Prof.Dimitrios Tzionas.jpg" style="align-self:center;width:150px;height: 150px;">
<div style="text-align:left;margin-left:10px;margin-top:20px">
<b><a
href="https://www.google.com/url?q=https%3A%2F%2Fimagine.enpc.fr%2F~varolg%2F&sa=D&sntz=1&usg=AOvVaw1J_f2NUrzLXoeDChSnjSBt">Prof.
Dr. Dimitrios Tzionas</a></b>
is an Assistant Professor at the University of Amsterdam. Earlier he was a
Research
Scientist at the Perceiving Systems (PS) department, at MPI for Intelligent Systems in Tübingen. His goal
is to develop
human-centered AI that perceives humans, understands their behavior and helps them to achieve their goals.
Potential
applications include Augmented/Virtual Reality (AR/VR), Human-Computer Interaction (HCI), and Human-Robot
Interaction
(HRI).
</div>
</div>
<div id="member" style="display:flex;width:100%;">
<img src="./profiles/2022/Dr.Robert Wang.jpg" style="align-self:center;width:150px;height: 150px;">
<div style="text-align:left;margin-left:10px;margin-top:20px">
<b><a
href="https://www.google.com/url?q=https%3A%2F%2Fhughw19.github.io&sa=D&sntz=1&usg=AOvVaw29aiBNPiw_IvGn33FEYohs">Dr.
Robert Wang</a></b>
supports a computer vision and machine perception team at Facebook Reality Labs / Oculus developing and
shipping
egocentric hand-tracking, body-tacking and and human understanding technology for augmented reality and
virtual reality.
Prior to that he had co-founded a small company, Nimble VR (acquired by Facebook) that built skeletal
hand-tracking
software.
</div>
</div>
</div>
<h1 id="organizers">Organizers</h1>
<li id="topicstyle2">Prof. Antonis Argyros (FORTH)</li>
<li id="topicstyle2">Dr. Anil Armagan (Huawei)</li>
<li id="topicstyle2">Dr. Guillermo Garcia-Hernando (Niantic)</li>
<li id="topicstyle2">Prof. Otmar Hilliges (ETHZ)</li>
<li id="topicstyle2">Prof. Tae-Kyun Kim (KAIST and Imperial College London)</li>
<li id="topicstyle2">Prof. Vincent Lepetit (ENPC ParisTech and TU Graz)</li>
<li id="topicstyle2">Dr. Iason Oikonomidis (FORTH)</li>
<li id="topicstyle2">Prof. Angela Yao (NUS)</li>
<h1 id="chal-committee">Challenge Committee</h1>
<li id="topicstyle2">Mr. Sammy Christen (ETH Zürich)</li>
<li id="topicstyle2">Mr. Shreyas Hampali (Graz University of Technology)</li>
<li id="topicstyle2">Mr. Linlin Yang (Uni Bonn and NUS)</li>
<h1 id="sponsors">Sponsors</h1>
<div class="sponsors-container">
<img class="sponsor-img" src="./profiles/2022/sponsor1.png">
</div>
<h1 id="contact">Contact</h1>
<p>[email protected]</p>
<div id="footer">
<p style="align-items: center;text-align: center;">
<a href="https://youtube.com/@handsworkshop" target="_Blank">
<img id="page1" alt="" src="./profiles/youtube.jpg">
</a>
<a href="https://github.com/handsworkshop" target="_Blank">
<img id="page" alt="" src="./profiles/github.png">
</a>
</p>
</div>
<script>
var isYearUpdated = false; // 标志,默认未更新年份
document.getElementById('outer_li_year').addEventListener('click', function (event) {
event.preventDefault(); // 阻止默认链接行为
// 获取第一个<li>标签中的年份
var year = document.querySelector('#outer_list > li:first-child > a').textContent.trim();
if (year > '2020') {
// 构建新的href
var newHref = 'workshop' + year + '.html';
// 跳转到新的页面
window.location.href = newHref;
}
});
document.getElementById('workshop_link').addEventListener('click', function (event) {
event.preventDefault(); // 阻止默认链接行为
if (!isYearUpdated) {
var year = document.querySelector('#outer_list > li:first-child > a').textContent.trim();
var newHref = 'workshop' + year + '.html';
window.location.href = newHref;
}
});
document.getElementById('challenge_link').addEventListener('click', function (event) {
event.preventDefault(); // 阻止默认链接行为
if (!isYearUpdated) {
var year = document.querySelector('#outer_list > li:first-child > a').textContent.trim();
var newHref = 'challenge' + year + '.html';
window.location.href = newHref;
}
});
// 获取所有带有id="style3"的a标签
var yearLinks = document.querySelectorAll('#style3');
yearLinks.forEach(function (link) {
link.addEventListener('click', function (event) {
// 获取点击的年份
var selectedYear = this.textContent.trim();
if (selectedYear < '2020') {
isYearUpdated = true;
document.getElementById('current_year').textContent = selectedYear;
// 设置标志为已更新年份
window.location.href = link.href; // 确保使用 href 进行跳转
} else {
event.preventDefault(); // 阻止默认链接行为
document.getElementById('current_year').textContent = selectedYear;
// 设置标志为已更新年份
isYearUpdated = true;
// 关闭下拉菜单(如果需要)
// document.getElementById('top_list').style.display = 'none';
// 可选:添加其他逻辑
}
});
});
var workshopLi = document.querySelector('#workshop_link');
workshopLi.classList.add('highlight');
</script>
</body>
</html>